75 | 0 | 3 |
下载次数 | 被引频次 | 阅读次数 |
为了解决金纳米颗粒在构建金属流体时存在的紫外-蓝光波段吸收较弱的问题,提出可采用由种子生长法制备的金核银壳纳米棒,该结构可将金纳米棒的局域表面等离激元共振(LSPR)移向紫外-蓝光波段,在有效增强这一波段光吸收的同时,不会影响透明窗口的透射率。实验结果表明,这种由不同尺寸的金纳米棒和金核银壳纳米棒所构成的胶体溶液,能够使紫外-蓝光波段透射率降低到1%以下,在3001100 nm光谱范围内实现了较好的宽带吸收,同时在中心波长730 nm附近获得了一个透明窗口,其带宽约为150 nm,透射率大于40%。这种由贵金属纳米颗粒胶体溶液所构成的具有窄带透明窗口的流体吸收器的制备方法相对简单,有望用于太阳电池、传感等领域。
Abstract:In order to solve the problem of weak absorption of gold nanoparticles in the ultraviolet-blue band during the construction of metal fluid,the Au-core Ag-shell nanorods prepared by the seed-mediated growth method were used to adjust the localized surface plasmon resonances(LSPR)of gold nanorod to the ultraviolet-blue spectral range.The corresponding absorption can be effectively enhanced without affecting the transmissivity of the transparent window at the same time.The experimental results indicate that by using the colloidal solutions composed of gold nanorods and Au-core Ag-shell nanorods with different sizes,the transmissivity in the ultravioletblue spectral range can be reduced to less than 1%,and the good broadband absorption is achieved at the spectral range of 300-1 100 nm.A transparent window is obtained at the center wavelength of around 730 nm,the bandwidth is about 150 nm and the transmissivity is larger than 40%.The preparation method of the fluid absorber with narrow band transparent window made up of noble metal nanoparticles colloid solution is relatively simple,and is expected to be used in the fields of solar cells and sensing.
[1]SEPU'LVEDA B,ANGELOMP C,LECHUGA L M,et al.LSPR-based nanobiosensors[J].Nano Today,2009,4(3):244-251.
[2]RIBOH J C,HAES AMANDA J,MCFARLAND A D,et al.A nanoscale optical biosensor:real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion[J].Journal of Physical Chemistry:B,2003,107(8):1772-1780.
[3]ANKER J N,HALL W P,LYANDRES O,et al.Biosensing with plasmonic nanosensors[J].Nature Materials,2008,7(6):442-453.
[4]CHANG W S,LASSITER J B,SWANGLAP P,et al.A plasmonic Fano switch[J].Nano Letters,2012,12(9):4977-4982.
[5]STERN L,GRAJOWER M,LEVY U.Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system[J].Nature Communications,2014,5:4865-1-4865-9.
[6]ZHANG J,GUO Z,GE C,et al.Plasmonic focusing lens based on single-turn nano-pinholes array[J].Optics Express,2015,23(14):17883-17891.
[7]DONG H,WU Z,ELSHAFEI A,et al.Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance[J].Journal of Materials Chemistry:A,2015,3(8):4659-4668.
[8]宋维,高红丽,白一鸣,等.金属表面等离激元增强聚合物太阳电池[J].微纳电子技术,2012,49(7):433-437.
[9]张鑫,刘海涛.光学异常透射研究进展[J].物理学进展,2016,36(4):118-127.
[10]GHAEMI H F,THIO T,GRUPP D E,et al.Surface plasmons enhance optical transmission through subwavelength holes[J].Physical Review:B,1998,58(11):6779-6782.
[11]花磊,宋国峰,郭宝山,等.中红外下半导体掺杂调制的表面等离子体透射增强效应[J].物理学报,2008,57(11):7210-7215.
[12]HARRIS S E.Electromagnetically induced transparency[J].Physics Today,1997,50(7):36-42.
[13]FANG Z,CAI J,YAN Z,et al.Removing a wedge from a metallic nanodisk reveals a fano resonance[J].Nano Letters,2011,11(10):4475-4479.
[14]SCHEER E,LHNEYSEN H V,HEIN H.Fabrication of noble-metal nanoconstrictions and observation of conductance fluctuations[J].Journal of Vacuum Science&Technology:B,1994,12(6):3171-3175.
[15]吕江涛,赵玉倩,司光远,等.超小间距纳米柱阵列中的谐振调制[J].物理学报,2013,62(23):381-386.
[16]LESUFFLEUR A,LIM K S,LINDQUIST N C,et al.Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment[C]//Proceedings of IEEE Annual International Conference on Engineering in Medicine and Biology Society.Minneapolis,MN,USA,2009:1481-1484.
[17]乔正阳,刘非拉,张云怀,等.一维贵金属纳米材料的控制合成与应用[J].化工进展,2012,31(10):2252-2259.
[18]谭信辉,蔡卫,张心正,等.光诱导金纳米颗粒光栅及表面等离子激元的激发[J].中国激光,2014,41(12):54-58.
[19]JANA N R,GEARHEART L,MURPHY C J.Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J].Journal of Physical Chemistry:B,2001,105(19):4065-4067.
[20]AND B N,ELSAYED M A.Preparation and growth mechanism of gold nanorods(NRs)using seed-mediated growth method[J].Chemistry of Materials,2003,15(10):1957-1962.
[21]PREZ-JUSTE J,PASTORIZA-SANTOS I,LIZ-MARZN L M,et al.Gold nanorods:synthesis,characterization and applications[J].Coordination Chemistry Reviews,2005,249(17):1870-1901.
[22]ZHANG H,DEMIR H V,GOVOROV A O.Plasmonic metamaterials and nanocomposites with the narrow transparency window effect in broad extinction spectra[J].ACS Photonics,2014,1(9):822-832.
[23]YANG J,KRAMER N J,SCHRAMKE K,et al.Broadband absorbing exciton-plasmon metafluids with narrow transparency windows[J].Nano Letters,2016,16(2):1472-1477.
[24]WEAKLIEM H A.Temperature dependence of the optical properties of silicon[J].Journal of Applied Physics,1979,50(3):1491-1493.
[25]KOVALEV D,POLISSKI G,BEN-CHORIN M,et al.The temperature dependence of the absorption coefficient of porous silicon[J].Journal of Applied Physics,1996,80(10):5978-5983.
[26]张荣君,际一鸣,郑玉祥,等.硅发光研究与进展[J].中国激光,2009,36(2):269-275.
[27]OKUNO Y,NISHIOKA K,KIYA A,et al.Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods[J].Nanoscale,2010,2(8):1489-1493.
[28]JIANG R,CHEN H,SHAO L,et al.Unraveling the evolution and nature of the plasmons in(Au core)-(Ag shell)nanorods.[J].Advanced Materials,2012,24(35):200-207.
[29]YE X,ZHENG C,CHEN J,et al.Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J].Nano Letters,2013,13(2):765-771.
[30]王智华,陈守慧,胡宸溢,等.金纳米棒的热稳定效应研究[J].纳米科技,2012(2):55-58.
[31]PARK K,BISWAS S,KANEL S,et al.Engineering the optical properties of gold nanorods:independent tuning of surface plasmon energy,extinction coefficient,and scattering cross section[J].Journal of Physical Chemistry:C,2014,118(11):5918–5926.
[32]JAIN P K,LEE K S,EL-SAYED I H,et al.Calculated absorption and scattering properties of gold nanoparticles of different size,shape,and composition:applications in biological imaging and biomedicine[J].Journal of Physical Chemistry:B,2006,110(14):7238-7248.
[33]GORELIKOV I,MATSUURA N.Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles[J].Nano Letters,2008,8(1):369-373.
基本信息:
DOI:10.13250/j.cnki.wndz.2018.07.002
中图分类号:O614.123;TB383.1
引用信息:
[1]张军磊,张垚,范晋丽等.具有窄带透明窗口的金属纳米颗粒流体吸收器[J].微纳电子技术,2018,55(07):468-474.DOI:10.13250/j.cnki.wndz.2018.07.002.
基金信息:
山西省自然科学基金资助项目(2012021010-3)