| 165 | 0 | 84 |
| 下载次数 | 被引频次 | 阅读次数 |
设计了一种基于非接触式摩擦纳米发电机(NC-TENG)的步态识别系统,旨在通过捕捉人体运动中的机械能实现精准的步态分析与分类。实验表明,该传感器的感应电压与运动速度、加速度以及角度均呈现良好的线性关系。当运动角度设定为200°时,输出电压达到峰值为0.75 V;在运动速度从90°/s提升至180°/s时,峰值电压从0.475 V显著提升至1.49 V,验证了NC-TENG用于步态信息采集的可行性。基于该系统对人体大腿的5种步态数据进行采集,并设计了一种结合了定义层和注意力机制的双向长短期记忆网络(BiLSTM)分类算法,实现了对序列数据的有效分类。实验结果显示,该系统输出的电压信号能够清晰表征每种步态的特征波形,实现了这5种步态动作的有效识别,其中蹲起、下楼梯的动作识别率分别高达90.0%和97.5%,展现了该步态识别系统在健康监测和运动科学领域的应用潜力。
Abstract:A gait recognition system based on a non-contact triboelectric nanogenerator(NC-TENG) was designed to achieve accurate gait analysis and classification by capturing the mechanical energy in human movement. Experiments show that the sensor's induced voltage exhibits good linear relationships with the motion speed, acceleration and angle. At a motion angle of 200°, the output voltage reaches its peak of 0.75 V. As the motion speed increases from 90°/s to 180°/s, the peak voltage significantly rises from 0.475 V to 1.49 V, demonstrating the feasibility of the NC-TENG for gait information acquisition. Based on this system, five kinds of gait data of human thighs were collected, and a bidirectional long and short-term memory(BiLSTM) classification algorithm combining the definition layer and attention mechanism was designed to realize the effective classification of the sequence data. Experimental results demonstrate that the voltage signals generated by the system can clearly characterize the feature waveforms of each gait, achieving effective identification of these five gait motions. Notably, the recognition rates for squat-stand and downstairs walking reach 90.0% and 97.5%, respectively, showing the application potential of this gait recognition system in health monitoring and sports science.
[1] TAO W J,LIU T,ZHENG R C,et al.Gait analysis using wearable sensors [J].Sensors (Basel),2012,12(2):2255-2283.
[2] MURO-DE-LA-HERRAN A,GARCIA-ZAPIRAIN B,MENDEZ-ZORRILLA A.Gait analysis methods:an overview of wearable and non-wearable systems,highlighting clinical applications [J].Sensors (Basel),2014,14(2):3362-3394.
[3] YUFRIDIN W,NORANTANUM A B.Gait analysis mea-surement for sport application based on ultrasonic system[C]// Proceedings of the 15th International Symposium on Consumer Electronics (ISCE).Singapore,2011:20-24.
[4] WATANABE K,HOKARI M.Kinematical analysis and measurement of sports form [J].IEEE Transactions on Systems,Man,and Cybernetics—Part A:Systems and Humans,2006,36(3):549-557.
[5] KIM C M,ENG J J.Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke:relationship to walking speed [J].Gait Posture,2004,20(2):140-146.
[6] CASADIO M,MORASSO P G,SANGUINETI V.Direct measurement of ankle stiffness during quiet standing:implications for control modelling and clinical application [J].Gait & Posture,2005,21(4):410-424.
[7] BONATO P.Wearable sensors/systems and their impact on biomedical engineering [J].IEEE Engineering in Medicine and Biology Magazine,2003,22(3):18-20.
[8] ENGIN M,DEMIREL A,ENGIN E Z,et al.Recent deve-lopments and trends in biomedical sensors [J].Measurement,2005,37(2):173-188.
[9] 李佳文,时凯,苏俊宏,等.石墨烯材料在人体感知监测领域的研究进展[J].微纳电子技术,2025,62(2):020105.LI J W,SHI K,SU J H,et al.Research progress of graphene materials in the field of human perception monitoring[J].Micronanoelectronic Technology,2025,62(2):020105(in Chinese).
[10] NOVAK D,REBER?EK P,de ROSSI S M,et al.Automated detection of gait initiation and termination using wearable sensors [J].Medical Engineering & Physics,2013,35(12):1713-1720.
[11] HOLZREITER S H,K?HLE M E.Assessment of gait patterns using neural networks [J].Journal of Biomecha-nics,1993,26(6):645-651.
[12] PAPPAS I P,POPOVIC M R,KELLER T,et al.A reliable gait phase detection system [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2001,9(2):113-125.
[13] FU X F,PAN X S,LIU Y,et al.Non-contact triboelectric nanogenerator [J].Advanced Functional Materials,2023,33(52):2306749.
[14] 王光伟,姜富豪,刁彬烜,等.用于自供电运动检测的单电极模式摩擦纳米发电机 [J].微纳电子技术,2024,61(9):090405.WANG G W,JIANG F H,DIAO B X,et al.Single-electrode mode triboelectric nanogenerator for self-powered motion detection [J].Micronanoelectronic Technology,2024,61(9):090405(in Chinese).
[15] YIN W L,XIE Y D,LONG J,et al.A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG) [J].Nano Energy,2018,50:16-24.
[16] GUO H,WU H X,SONG Y,et al.Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing [J].Nano Energy,2019,58:121-129.
[17] WANG Z L.On Maxwell’s displacement current for energy and sensors:the origin of nanogenerators [J].Materials Today,2017,20(2):74-82.
[18] WANG B B,GAO M,FU X F,et al.3D printing deep-trap hierarchical architecture-based non-contact sensor for multi-direction motion monitoring [J].Nano Energy,2023,107:108135.
[19] XU C,ZI Y L,WANG A C,et al.On the electron-transfer mechanism in the contact-electrification effect [J].Advanced Materials,2018,30(15):1706790.
[20] ANAYA D V,ZHAN K,TAO L,et al.Contactless tracking of humans using non-contact triboelectric sensing technology:enabling new assistive applications for the elderly and the visually impaired [J].Nano Energy,2021,90:106486.
[21] 蔡婷婷,尹振华,马鸣宇,等.用于人体运动与语音识别的柔性可拉伸摩擦电传感器 [J].微纳电子技术,2024,61(1):010405.CAI T T,YIN Z H,MA M Y,et al.Flexible and stretchable triboelectric sensor for recognition of human motion and pronunciation [J].Micronanoelectronic Technology,2024,61(1):010405(in Chinese).
[22] CHENG T H,SHAO J J,WANG Z L.Triboelectric nanogenerators [J].Nature Reviews Methods Primers,2023,3(1):39.
[23] ZHANG X S,HAN M D,WANG R X,et al.High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment [J].Nano Energy,2014,4:123-131.
[24] ZHANG L,ZHANG B,CHEN J,et al.Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops [J].Advanced Materials,2016,28(8):1650-1656.
基本信息:
DOI:10.13250/j.cnki.wndz.25100102
中图分类号:TB383.1;TP18;TM31;TP212
引用信息:
[1]顾梦辰,张静怡,曹自平.基于非接触式摩擦纳米发电机的步态识别方法[J].微纳电子技术,2025,62(10):18-27.DOI:10.13250/j.cnki.wndz.25100102.
基金信息:
国家自然科学基金(62371253)