131 | 1 | 28 |
下载次数 | 被引频次 | 阅读次数 |
针对湿法气溶胶技术在喷印过程中由于需要提高喷印线条精度和使用有机溶剂而带来的诸多问题,设计了一种鞘气辅助空气动力学透镜的干法气溶胶喷印装置,实现金属纳米颗粒材料的聚焦和沉积。该装置以鞘气辅助空气动力学透镜作为聚焦模块、以纳米银粉作为材料,避免了因使用有机溶剂带来的问题。在使用透镜公式计算的基础上,通过透镜计算器综合得出透镜结构尺寸,选择合适方式引入鞘气辅助聚焦,通过SolidWorks建模软件对装置进行建模,并采用Ansys Fluent仿真软件对空气动力学透镜进行仿真分析。仿真结果表明:颗粒粒径对透镜聚焦效果有较大影响;辅助鞘气倾角为40°时装置有更好的聚焦效果。在已构建的气溶胶喷印平台上对所设计装置进行实验研究,探究喷印线条形貌变化。在实验研究中获得了最小线宽为86.09μm的喷印线条,相当于喷嘴直径的43%。同时实验结果表明载气体积流量、基底温度、鞘气体积流量对喷印线条宽度有较大影响,对线条高度影响较小,喷印层数对线条宽度、高度都有较大影响。
Abstract:To resolve the issues of wet aerosol technology in the printing process due to the need to improve the accuracy of the printing line and the use of organic solvents, a dry aerosol jet printing device with sheath gas-assisted aerodynamic lens was designed to achieve the focusing and deposition of metal nanoparticle materials. With sheath gas-assisted aerodynamic lens as the focusing module and nano-silver powder as the material, the device can avoid the issues caused by organic solvents. Based on the calculation with the lens formula, the lens structure dimensions were synthesized by the lens calculator, a suitable way was selected to introduce the sheath gas assisted focusing. The device was modeled by SolidWorks modeling software, and the aerodynamic lens was simulated and analyzed by Ansys Fluent simulation software. The simulation results show that the particle size has a large impact on the lens focusing effect, the device has a better focusing effect with a auxiliary sheath gas inclination angle of 40°. The experimental study of the designed device was carried out on the constructed aerosol printing platform to investigate the variation of the printing line morphology. In the experimental study, the printed line with a minimum line width of 86.09 μm is obtained, which corresponds to 43% of the nozzle diameter. Meanwhile, the experimental results show that the carrier gas volume flow, substrate temperature and sheath gas volume flow have great effect on the printing line width and little effect on the printing line height, the number of printing layers has great effect on the width and height of the printing line.
[1] WANG K,CHANG Y H,ZHANG C,et al.Conductive-on-demand:tailorable polyimide/carbon nanotube nanocompo-site thin film by dual-material aerosol jet printing[J].Carbon,2016,98:397-403.
[2] WILKINSON N J,SMITH M A A,KAY R W,et al.A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing[J].The International Journal of Advanced Manufacturing Technology,2019,105:4599-4619.
[3] CHEN Y D,NAGARAJAN V,ROSEN D W,et al.Aerosol jet printing on paper substrate with conductive silver nano material[J].Journal of Manufacturing Processes,2020,58:55-66.
[4] EFIMOV A A,ARSENOV P V,BORISOV V I,et al.Synthesis of nanoparticles by spark discharge as a facile and versatile technique of preparing highly conductive Pt nano-ink for printed electronics[J].Nanomaterials,2021,11(1):234-1-234-18.
[5] LIU P,ZIEMANN P J,KITTELSON D B,et al.Generating particle beams of controlled dimensions and divergence:I.theory of particle motion in aerodynamic lenses and nozzle expansions[J].Aerosol Science and Technology,1995,22(3):293-313.
[6] KLINKOV S V,KOSAREV V F,REIN M.Cold spray deposition:significance of particle impact phenomena[J].Aerospace Science and Technology,2005,9(7):582-591.
[7] BAGHERIFARD S,ASTARAEE A H,LOCATI M,et al.Design and analysis of additive manufactured bimodal structures obtained by cold spray deposition[J].Additive Manufacturing,2020,33:101131-101152.
[8] AKEDO J.Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices[J].Journal of Thermal Spray Technology,2008,17(2):181-198.
[9] LEE G Y,KIM M S,YOON H S,et al.Direct printing of strain sensors via nanoparticle printer for the applications to composite structural health monitoring[J].Procedia CIRP,2017,66:238-242.
[10] TAFRESHI H V,BENEDEK G,PISERI P,et al.A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic foucsing[J].Aerosol Science and Technology,2002,36(5):593-606.
[11] WANG X L,KRUIS F E,MCMURRY P H.Aerodynamic focusing of nanoparticles:I.guidelines for designing aerodynamic lenses for nanoparticles[J].Aerosol Science and Technology,2005,39(7):611-623.
[12] WANG X L,GIDWANI A,GIRSHICK S L,et al.Aerodynamic focusing of nanoparticles:II.numerical simulation of particle motion through aerodynamic lenses[J].Aerosol Science and Technology,2005,39(7):624-636.
[13] WANG X L,MCMURRY P H.A design tool for aerodynamic lens systems[J].Aerosol Science and Technology,2006,40(5):320-334.
[14] GONG S C,LIU R G,CHOU F C,et al.Experiment and simulation of the recirculation flow in a CVD reactor for monolithic materials[J].Experimental Thermal and Fluid Science,1996,12(1):45-51.
[15] MALLINA R V,WEXLER A S,RHOADS K P,et al.High speed particle beam generation:a dynamic focusing mechanism for selecting ultrafine particles[J].Aerosol Science and Technology,2000,33(1/2):87-104.
[16] ZHANG X F,SMITH K A,WORSNOP D R,et al.A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system:part I.an individual lens or nozzle[J].Aerosol Science and Technology,2002,36(5):617-631.
[17] GONG S C,LIU R G,CHOU F C,et al.Experiment and simulation of the recirculation flow in a CVD reactor for monolithic materials[J].Experimental Thermal and Fluid Science,1996,12(1):45-51.
[18] TAFRESHI H V,BENEDEK G,PISERI P,et al.A simple nozzle configuration for the production of low divergence supersonic cluster beam by aerodynamic focusing[J].Aerosol Science and Technology,2002,36(5):593-606.
[19] 刘志影.空气动力学透镜进样装置的设计、仿真和评估[D].上海:上海大学,2014.
[20] LAUNDER B E,SPALDING D B.Lectures in mathematical model of turbulence[M].New York:Academic Press,1972:157-162.
基本信息:
DOI:10.13250/j.cnki.wndz.2023.04.017
中图分类号:TP391.73
引用信息:
[1]舒霞云,王策,常雪峰等.鞘气辅助空气动力学透镜的干法气溶胶喷印装置设计[J].微纳电子技术,2023,60(04):615-625.DOI:10.13250/j.cnki.wndz.2023.04.017.
基金信息:
国家自然科学基金面上项目(51975501); 福建省自然科学基金项目(2022J011243)