nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2019, 05, v.56;No.504 414-418
生长温度对4HN-SiC同质外延层表面缺陷的影响
基金项目(Foundation): 石家庄市科学技术研究与发展计划资助项目(181130191A)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2019.05.013
摘要:

采用化学气相沉积(CVD)的方法在直径100 mm4°偏角衬底上生长4HN-SiC同质外延片,研究工艺生长温度对外延层表面缺陷的影响,并使用金相显微镜、表面缺陷测试设备、汞探针和红外膜厚仪进行分析和表征。结果表明,工艺生长温度由1 550℃增加到1 620℃,外延层表面的三角形缺陷密度可降低至0.39 cm-2;但随着工艺生长温度的增加,导致外延层边缘的台阶聚集数量和长度也急剧增加。在高生长温度下,外延层表面三角缺陷减少以及边缘台阶聚集增加的原因为:一是衬底表面原子迁移率的增加,减少了衬底表面2D生长;二是硅原子的气相成核受到抑制;三是〈1100〉和〈1120〉方向横向生长速率的差异加剧。综上结果,采用1 550℃生长工艺可在高生长速率下制备厚度均匀性和掺杂浓度均匀性分别为1.44%和1.92%的高质量4HN-SiC同质外延片。

Abstract:

4 HN-SiC homoepitaxial wafers were grown on the 4°off-axis substrate with the diameter of 100 mm using the chemical vapor deposition(CVD)method.The effect of the growth temperature on surface defects of the epitaxial layer was investigated.The epitaxial layers were analyzed and characterized by using the metallographic microscope,surface defect test device,mercury-probe and infrared film thickness gauge.The results show that the triangle defect density of the epitaxial layers can be decreased to 0.39 cm-2 by increasing growth temperature from1 550℃to 1 620 ℃,but the edge step bunching number and length of the epitaxial layers increase obviously with the increase of growth temperature.These results can be attributed to the following aspects:the substrate surface 2 D growth is reduced by increasing of the atom mobility on the substrate surface;the vapor nucleation of silicon atom is restrained;the difference of lateral growth rates increases in〈1100〉and〈1120〉directions.It is found that the high quality 4 HN-SiC homoepitaxial wafers can be prepared by using the high growth rate at 1 550 ℃,the thickness uniformity and doping concentration uniformity are 1.44%and 1.92%,respectively.

参考文献

[1]la VIA L,CAMARDA M,la MAGNA A.Mechanisms of growth and defect properties of epitaxial SiC[J].Applied Physics Reviews,2014,1(3):031301-1-031301-36.

[2]ZHANG L,THOMAS B,MOEGGENBORG K,et al.Progress of SiC epitaxy on 150 mm substrates[J].Materials Science Forum,2015,821/823:161-164.

[3]KIMOTO T,YONEZAWA Y.Current status and perspectives of ultrahigh-voltage SiC power devices[J].Materials Science in Semiconductor Processing,2018,78:43-56.

[4]KIMOTO T.Material science and device physics in SiC technology for high-voltage power devices[J].Japanese Journal of Applied Physics,2015,54(4):040103-1-040103-27.

[5]MOMOSE K,ODAWARA M,TAJIMA Y,et al.Shortlength step morphology on 4°off Si-face epitaxial surface grown on 4H-SiC substrate[J].Materials Science Forum,2010,645/646/647/648:115-118.

[6]YAMASHITA T,MOMOSE K,MUTO D,et al.Characterization of triangular-defects in4°off 4H-SiC epitaxial wafers by synchrotron X-ray topography and by transmission electron microscopy[J].Materials Science Forum,2012,717/718/719/720:363-366.

[7]MABUCHI Y,MASUDA T,MUTO D,et al.Investigation of carrot reduction effect on4H-silicon carbide epitaxial wafers with optimized buffer layer[J].Materials Science Forum,2017,(897):75-78.

[8]YAZDANFAR M,LEONE S,PEDERSEN H,et al.Carrot defect control in chloride-based CVD through optimized ramp up conditions[J].Materials Science Forum,2012,717/718/719/720:109-112.

[9]KAMEI K,GUO L,MOMOSE K,et al.Structure of straight-line defect and its effect on the electrical properties of Schottky barrier diodes[J].Materials Science Forum,2016,858:213-216.

[10]WADA K,KIMOTO T,NISHIKAWA K,et al.Epitaxial growth of 4H-SiC on 4°off-axis(0001)and(000 1)substrates by hot-wall chemical vapor deposition[J].Journal of Crystal Growth,2006,291(2):370-374.

[11]LEONE S,BEYER F C,PEDERSEN H,et al.Growth of smooth 4H-SiC epilayers on 4°off-axis substrates with chloride-based CVD at very high growth rate[J].Materials Research Bulletin,2011,46(8):1272-1275.

[12]李哲,鞠涛,钮应喜,等.4H-SiC氯基体系外延研究[J].智能电网,2016,4(7):649-652.

[13]卜爱民,房玉龙,李佳,等.基于三氯硅烷的高质量4H-SiC多片外延生长[J].半导体技术,2018,43(3):228-232.

[14]毛开礼,王英民,李斌,等.SiC厚膜快速外延生长刻蚀工艺研究[J].功能材料,2017,48(1):01139-01143.

[15]SHRIVASTAVA A,MUZYKOV P,CALDWELL J D,et al.Study of triangular defects and inverted pyramids in 4H-SiC4°off-cut(0001)Si face epilayers[J].Journal of Crystal Growth,2008,310(20):4443-4450.

[16]MAO K L,WANG Y M,LI B,et al.Origin analysis and elimination of obtuse triangular defects in 4°off 4H-SiC epitaxy[J].Materials Science Forum,2018,924:168-171.

[17]DAS H,MELNYCHUK G,KOSHKA Y.Triangular defects in the low-temperature halo-carbon homoepitaxial growth of 4H-SiC[J].Journal of Crystal Growth,2010,312(12/13):1912-1919.

[18]SYVJRVI M,YAKIMOVA R,JANZN E.Step-bunching in SiC epitaxy:anisotropy and influence of growth temperature[J].Journal of Crystal Growth,2002,236(1/2/3):297-304.

基本信息:

DOI:10.13250/j.cnki.wndz.2019.05.013

中图分类号:TN304.05

引用信息:

[1]赵丽霞,张国良.生长温度对4HN-SiC同质外延层表面缺陷的影响[J].微纳电子技术,2019,56(05):414-418.DOI:10.13250/j.cnki.wndz.2019.05.013.

基金信息:

石家庄市科学技术研究与发展计划资助项目(181130191A)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文