nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 11, v.59 1105-1118
超级电容器材料及应用研究进展
基金项目(Foundation): 国家自然科学基金资助项目(51875478,51905445); 陕西省自然科学基金资助项目(2018JQ5020); 重点实验室基金资助项目(6142201200403)
邮箱(Email): ;;
DOI: 10.13250/j.cnki.wndz.2022.11.001
摘要:

作为新型储能装置之一,相较于传统储能装置,超级电容器具有功率密度高、使用寿命长、充放电速率快等优越特性,因而受到了研究者们的广泛关注。介绍了超级电容器的发展历程、分类及工作原理;概述了应用于超级电容器的碳基材料、过渡金属氧化物、导电聚合物及复合材料等电极材料的研究进展;阐述了超级电容器在工业、电力、汽车、航空等领域以及柔性超级电容器在可穿戴电子产品中的应用状况;分析了当前超级电容器的不足及面临的挑战;总结了超级电容器新的可能应用领域(如生物、医疗和神经形态学计算等领域)及新的研究方向(如超级电容器精确数学模型等)。

Abstract:

As one of new type energy storage devices, compared with traditional energy storage devices, supercapacitors have attracted extensive attention due to superior characteristics such as high power density, long cycle life, fast charge and discharge rate and so on. The development, classification and working principle of supercapacitors are introduced. The research progress of electrode materials such as carbon-based materials, transition metal oxides, conductive polymers and composite materials is summarized. The application of supercapacitors in industry, electric power, automobile, aerospace and other fields is described, and the application of flexible supercapacitors in wearable electronic products is expounded. The shortcomings and facing challenges of current supercapacitors are analyzed. The new possible application fields of supercapacitors(such as biology, medical treatment, neuromorphology calculation, etc.) and new research directions(such as accurate mathematical model of supercapacitors) are summarized.

参考文献

[1] CHOUDHARY N,LI C,MOORE J,et al.Asymmetric supercapacitor electrodes and devices[J].Advanced Mate-rials,2017,29(21):1605336-1-1605336-30.

[2] 田园,张燕丽,付起凤,等.超级电容器用碳基电极材料的研究进展[J].化学与粘合,2021,43(2):143-145.

[3] WINTER M,BRODD R J.What are batteries,fuel cells,and supercapacitors[J].Chemical Reviews,2004,104 (10):4245-4269.

[4] CASTAINGS A,LHOMME W,TRIGUI R,et al.Compa-rison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints[J].Applied Energy,2016,163:190-200.

[5] SHAO Y L,EL-KADY M F,SUN J Y,et al.Design and mechanism of asymmetric supercapacitors[J].Chemical Reviews,2018,118(18):9233-9280.

[6] WANG F X,WU X W,YUAN X H,et al.Latest advances in supercapacitors:from new electrode materials to novel device designs[J].Chemical Society Reviews,2017,46(22):6816-6854.

[7] WANG T,CHEN H C,YU F,et al.Boosting the cycling stability of transition metal compounds-based supercapacitors [J].Energy Storage Materials,2019,16:545-573.

[8] LIU S,WEI L,WANG H.Review on reliability of super-capacitors in energy storage applications[J].Applied Energy,2020,278:115436-1-115436-13.

[9] CHEN X L,PAUL R,DAI L M.Carbon-based super-capacitors for efficient energy storage[J].National Science Review,2017,4(3):453-489.

[10] MENG Q F,CAI K F,CHEN Y X,et al.Research progress on conducting polymer based supercapacitor electrode materials[J].Nano Energy,2017,36:268-285.

[11] OWUSU K A,QU L B,LI J T,et al.Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors[J].Nature Communications,2017,8(1):14264-1-14264-11.

[12] MACHIDA K,SUEMATSU S,ISHIMOTO S,et al.High-voltage asymmetric electrochemical capacitor based on poly-fluorene nanocomposite and activated[J].Journal of the Electrochemical Society,2008,155(12):A970-A974.

[13] WANG Q,NIE Y F,XIAO Z H,et al.Simply incorporating an efficient redox additive into KOH electrolyte for largely improving electrochemical performances[J].Journal of Electroanalytical Chemistry,2016,770:62-72.

[14] WANG Q,NIE Y F,CHEN X Y,et al.Controllable synthesis of 2D amorphous carbon and partially graphitic carbon mate-rials:large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte[J].Electrochimica Acta,2016,200:247-258.

[15] YOO J J,BALAKRISHNAN K,HUANG J S,et al.Ultrathin planar graphene supercapacitors[J].Nano Letters,2011,11(4):1423-11427.

[16] DEVI N,RAY S S.Performance of bismuth-based mate-rials for supercapacitor applications:a review[J].Mate-rials Today Communications,2020,25:101691-1-101691-19.

[17] ZHENG T,WANG X D,LIU Y Y,et al.Polyaniline-decorated hyaluronic acid-carbon nanotube hybrid microfiber as a flexible supercapacitor electrode material[J].Carbon,2020,159:65-73.

[18] XU Q,XU J K,JIA H Y,et al.Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen[J].Journal of Electroanalytical Chemistry,2020,860:113869-1-113869-9.

[19] SALUNKHE R R,TANG J,KAMACHI Y,et al.Asymmetric supercapacitors sing 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework[J].ACS Nano,2015,9(6):6288-6296.

[20] ZHANG Y,CAI T H,HUANG J F,et al.Functionalized activated carbon prepared form petroleum coke with high-rate super capacitive performance[J].Journal of Materials Research,2016,31(23):3723-3730.

[21] AJAY K M,DINESH M N.Influence of various activated carbon based electrode materials in the performance of super capacitor[C]// Procedegs of International Conference on Advances in Materials and Manufacturing Applications.Bengaluru,India,2018,310:012083-1-012083-8.

[22] GRISHCHENKO L M,TSAPYUK G G,RICCO M,et al.Enhancing the performance of supercapacitor activated carbon electrodes by oxidation[C]// Proceedings of the 40th IEEE International Conference on Electronics and Nanotechnology.Kyiv,Ukraine,2020:173-177.

[23] 田芷齐.煤基活性炭孔结构调控及超级电容高体积储能特性研究[D].哈尔滨:哈尔滨工业大学,2020.

[24] LIN X D,LIANG Y R,LU Z T,et al.Mechanochemistry:a green,activation-free and top-down strategy to high surface area carbon materials[J].ACS Sustainable Chemistry & Engineering,2017,5(10):8535-8540.

[25] JIANG X,SHI G F,WANG G Y,et al.A hydrothermal carbonization process for the preparation of activated carbons from hemp straw:an efficient electrode material for supercapacitor application[J].Ionics,2019,25(7):3299-3307.

[26] GHOSH S,SANTHOSH R,JENIFFER S,et al.Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes[J].Scientific Reports,2019,9:16315-1-16315-15.

[27] LIU Y,ZHANG M Y,WANG L Q,et al.A biomass carbon material with microtubule bundling and natural O-doping derived from goldenberry calyx and its electrochemical performance in supercapacitor[J].Chinese Che-mical Letters,2020,31(3):805-808.

[28] TAER E,APRIWANDI A,PURBA Z,et al.Porous carbon nanofiber monolith binder-free derived from stink bean pod peel as electrode material for symmetric supercapacitor application[J].Journal of Ovonic Research,2021,17 (5):487-497.

[29] YAN D,LIU L,WANG X Y,et al.Biomass-derived activated carbon nanoarchitectonics with hibiscus flowers for high-performance supercapacitor electrode applications[J].Chemical Engineering Technology,2022,45(4):649-657.

[30] HSU Y K,CHEN Y C,LIN Y G,et al.High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution[J].Journal of Materials Chemistry,2012,22(8):3383-3387.

[31] WANG R,CAI S C,YAN Y Z,et al.A novel high-performance electrode architecture for supercapacitors:Fe2O3 nanocube and carbon nanotube functionalized carbon[J].Journal of Materials Chemistry:A,2017,5(43):22648-22653.

[32] CHILDRESS A,FERRI K,RAO A M.Enhanced super-capacitor performance with binder-free helically coiled carbon nanotube electrodes[J].Carbon,2018,140:377-384.

[33] GHOSH M,RAO G M.Vertically aligned tree-like carbon nanostructure as an electrode of the electrochemical capacitor[J].Journal of Solid State Electrochemistry,2019,23(5):1605-1611.

[34] KANG C S,KO Y I,FUJISAWA K,et al.Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications[J].Carbon Letters,2020,30(5):527-534.

[35] WANG Y,LAI W H,WANG N,et al.A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life[J].Energy & Environmental Science,2017,10(4):941-949.

[36] MA J,WANG L,YU F.Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material[J].Electrochimica Acta,2018,263:40-46.

[37] TEIMURI-MOFRAD R,ABBASI H,HADI R.Graphene oxide-grafted ferrocene moiety via ring opening poly-merization (ROP) as a supercapacitor electrode material[J].Polymer,2019,167:138-145.

[38] WANG C J,LIU F,CHEN J S,et al.A graphene-covalent organic framework hybrid for high-performance super-capacitors[J].Energy Storage Materials,2020,32:448-457.

[39] LI P,LI H P,ZHANG X L,et al.Facile fabrication and improved super capacitive performance of exfoliated graphene with hierarchical porous structure[J].Journal of Energy Storage,2021,33:102044-1-102044-10.

[40] 王长城,胡红利,李龙,等.过渡金属氧化物在超级电容器中的研究进展[J].电力电容器与无功补偿,2020,41(5):81-87.

[41] JI S H,CHODANKAR N R,KIM D H.Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes[J].Electrochimica Acta,2019,325:134879-1-134879-10.

[42] ASIM S,JAVED M S,HUSSAIN S,et al.RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries[J].Electrochimica Acta,2019,326:135009-1-135009-9.

[43] 张亚雄.MnO2 超级电容器电极的反应动力学及其性能调控研究[D].甘肃:兰州大学,2020.

[44] JIANG S B,YANG B J,LU Y,et al.An aqueous symmetrical supercapacitor with high bulk pseudocapacitance induced by phase transformation of MnO2[J].Journal of Alloys and Compounds,2021,876:160148-1-160148-9.

[45] XIE Y Y,CHEN H J,BAI Q Y,et al.NiO nanofibers clad nickel foam as binder-free electrode with ultrahigh mass loading:boosting performance of hybrid supercapacitor and overall water-splitting[J].Electrochimica Acta,2021,390:138772-1-138772-11.

[46] JOSEPH N,SHAFI P M,SETHULAKSHMI J S,et al.Three dimensional NiO nanonetwork electrode for efficient electrochemical energy storage application[J].Electrochimica Acta,2021,399:139392-1-139392-8.

[47] CHEN H Y,DU X M,SUN J L,et al.Template-free synthesis of novel Co3O4 micro-bundles assembled with flakes for high-performance hybrid supercapacitors[J].Ceramics International,2021,47(1):716-724.

[48] GONG C,HUANG M L,ZHOU P,et al.Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor[J].Applied Surface Science,2016,362:469-476.

[49] NASHIM A,PANY S,PARIDA K M.La2Ti2O7 as nanometric electrode material:an emerging candidate for supercapacitor performance [J].Chemistry Select,2019,4(41):12037-12042.

[50] WISTON B R,ASHOK M.Microwave-assisted synthesis of cobalt-manganese oxide for supercapacitor electrodes[J].Materials Science in Semiconductor Processing,2019,103(15):104607-1-104607-8.

[51] ISACFRANKLIN M,YUVAKKUMAR R,RAVI G,et al.CuCoO2 electrodes for supercapacitor applications[J].Materials Letters,2021,296:129930-1-129930-4.

[52] RAMYA R,SIVASUBRAM R,SANGARANYAN M V.Conducting polymers-based electrochemical supercapacitors—progress and prospects[J].Electrochimica Acta,2013,101:109-129.

[53] CHENG Y L,HUANG L,XIAO X,et al.Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode[J].Nano Energy,2015,15:66-74.

[54] CHEN S Y,LIU B,ZHANG X Y,et al.Growth of poly-aniline on TiO2 tetragonal prism arrays as electrode mate-rials for supercapacitor[J].Electrochimica Acta,2019,300:373-379.

[55] GUAN X,PAN L J,FAN Z.Flexible,transparent and highly conductive polymer film electrodes for all-solid-state transparent supercapacitor applications [J].Membranes,2021,11(10):788-1-788-13.

[56] LI L,FENG L,HAO G,et al.A new two-dimensional covalent organic framework with intralayer hydrogen bonding as supercapacitor electrode material[J].Microporous and Mesoporous Materials,2021,32:110766-1-110766-10.

[57] LI M,LUO Y Y,JIA C,et al.Au-assisted polymerization of conductive poly(N-phenylglycine) as high-performance positive electrodes for asymmetric supercapacitors[J].Nanotechnology,2022,33(4):045602-1-045602-11.

[58] SUN Q,YAO K X,ZHANG Y X.MnO2-directed synthesis of NiFe-LDH@FeOOH nanosheeet arrays for super-capacitor negative electrode[J].Chinese Chemical Letters,2020,31(9):2343-2346.

[59] RAJAGOPAL R,RYU K S.Temperature controlled synthesis of Ce-MnO2 nanostructure:promising electrode material for supercapacitor applications[J].Science of Advanced Materials,2020,12(4):461-469.

[60] 梁晰童.稀土及过渡金属基材料的制备与超级电容器性能研究[D].合肥:中国科学技术大学,2021.

[61] CHEN X,LI Y,LI C,et al.A novel strategy of multi-element nanocomposite synthesis for high performance ZnO-CoSe2 supercapacitor material development[J].Chinese Journal of Chemistry,2021,39(9) :2441-2450.

[62] RAMESH S,KARUPPASAMY K,SIVASAMY A,et al.Core shell nanostructured of Co3O4@RuO2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application[J].Journal of Alloys and Compounds,2021,877:160297-1-160297-9.

[63] WANG Q Q,WANG J B,WANG H Y,et al.TiO2-C nanowire arrays@polyaniline core-shell nanostructures on carbon cloth for high performance supercapacitors[J].Applied Surface Science,2019,493:1125-1133.

[64] 林迎曦.导电聚合物柔性复合电极的结构设计及其在超级电容器中的应用[D].广州:广东工业大学,2020.

[65] ZHANG R R,CHEN C N,YU H H,et al.All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes[J].Journal of Electroanalytical Chemistry,2021,893:115323-1-115323-12.

[66] HEYDARI H,ABDOUSS M,MAZINANI S,et al.Electrochemical study of ternary polyaniline/MoS2-MnO2 for supercapacitor applications[J].Journal of Energy Storage,2021,40:102738-1-102738-12.

[67] RAHMAN M M,JOY P M,UDDIN N M,et al.Improvement of capacitive performance of polyaniline based hybrid supercapacitor[J].Heliyon,2021,7(7):e07407-1-e07407-9.

[68] ZHANG C,XIE A J,ZHANG W Q,et al.CuMn2O4 spinel anchored on graphene nanosheets as a novel electrode material for supercapacitor[J].Journal of Energy Storage,2021,34:102181-1-102181-11.

[69] SHRIVASTAV V,SUNDRIYAL S,TIWARI U K,et al.Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode[J].Energy,2021,235:121351-1-121351-12.

[70] ASKARI M B,SALARIZADEN PA,BEHESHTI-MARNANI A,et al.NiO-Co3O4-rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells[J].Advanced Materials Interfaces,2021,8(15):2100149-1-2100149-11.

[71] LI W,XU A Z,ZHANG Y,et al.Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes[J].Journal of Alloys and Compounds,2022,897:162640-1-162640-11.

[72] 钟文斌,王传志.生物质/聚吡咯复合材料的电化学性能研究[J].湖南大学学报:自然科学版,2018,45(12):102-107.

[73] 张兆发.石墨烯纤维的制备及超级电容器和传感器应用研究[D].兰州:兰州大学,2019.

[74] 朱宇灿.基于石墨烯的柔性电极设计、制备及超级电容器特性研究[D].成都:电子科技大学,2021.

[75] REN R Q,ZHONG Y,FAN Y M.A high-performance electrode based on reduced graphene oxide/lignosulfonate/carbon microspheres film for flexible supercapacitors[J].BioResource,2022,17(1):1729-1744.

[76] SIWAL S S,ZHANG Q,SUN C B,et al.Graphitic carbon nitride doped copper-manganese alloy as high-performance electrode material in supercapacitor for energy storage[J].Nanomaterials,2020,10(1):2-1-2-13.

[77] KURTAN U,AYDIN H,BüYüK B,et al.Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode[J].Journal of Energy Storage,2020,32:101671-1-101671-7.

[78] ZHANG H,TIAN Y H,WANG S,et al.Highly stable flexible transparent electrode via rapid electrodeposition coating of Ag-Au alloy on copper nanowires for bifunctional electrochromic and supercapacitor device[J].Chemical Engineering Journal,2020,399:125075-1-125075-10.

[79] YANG Y C,HAN Y H,JIANG W K,et al.Application of the supercapacitor for energy storage in china:role and strategy[J].Applied Sciences.2022;12(1):354-1-354-19.

[80] GHAVIHA N,CAMPILLO J,BOHLIN M,et al.Review of application of energy storage devices in railway transportation[J].Energy Procedia,2017:4561-4568.

[81] 黄晓斌,张熊,韦统振,等.超级电容器的发展及应用现状[J].电工电能新技术,2017,36(11) :63-70.

[82] ORTENZI F,PASQUALI M,PROSINI P P,et al.Design and validation of ultra-fast charging infrastructures based on supercapacitors for urban public transportation applications[J].Energies,2019,12 (12):2348-1-2348-13.

[83] MILLER J R,SIMON P.Electrochemical capacitors for energy management [J].Science,2008,321(5889):651-652.

[84] YANG B,WANG J B,WANG J T,et al.Robust frac-tional-order PID control of supercapacitor energy storage systems for distribution network applications:a perturbation compensation based approach[J].Journal of Cleaner Production,2021,279:123362-1-123362-15.

[85] 刘琳,张力,邱实,等.超级电容模块在舰载雷达电源系统的应用研究[J].船电技术,2020,40(7):62-64.

[86] KAYEON K,KIM J W,HONG S Y,et al.Flexible/stretchable supercapacitors with novel functionality for wearable electronics[J].Advanced Materials,2020,32(51):2002180-1-2002180-34.

[87] LIU L,FENG Y,WU W.Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage[J].Journal of Power Sources,2019,410/411:69-77.

[88] YU C Y,AN J N,CHEN Q,et al.Recent advances in design of flexible electrodes for miniaturized supercapacitors[J].Small Methods,2020,4(6):1900824-1-1900824-31.

[89] 田伟.瞬态超级电容器作为绿色储能装置的制备与性能研究[D].济南:齐鲁工业大学,2021.

基本信息:

DOI:10.13250/j.cnki.wndz.2022.11.001

中图分类号:TB30;TM53

引用信息:

[1]石文明,刘意华,吕湘连等.超级电容器材料及应用研究进展[J].微纳电子技术,2022,59(11):1105-1118.DOI:10.13250/j.cnki.wndz.2022.11.001.

基金信息:

国家自然科学基金资助项目(51875478,51905445); 陕西省自然科学基金资助项目(2018JQ5020); 重点实验室基金资助项目(6142201200403)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文