nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 09, v.59 869-874+890
聚吡咯包覆的普鲁士蓝电极材料制备及其电化学性能
基金项目(Foundation): 国家自然科学基金资助项目(51672172,51872186,51971128,52171185); 上海市优秀学术/技术带头人计划项目(20XD1401800); 上海市科委项目(19020501000); 微机电系统浙江省工程研究中心开放课题基金资助项目(MEMSZJERC2205); 校企合作横向项目(H2021-271)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2022.09.006
摘要:

超级电容器作为一种新型的储能器件,其性能一直由电极材料所决定。采用简单的水热法制备了普鲁士蓝(PB)方块纳米材料,并通过原位氧化聚合法成功包覆聚吡咯(PPy),得到PB@PPy纳米复合材料。在1 mol/L的KOH电解液中对其进行电化学测试,表现出优秀的电化学性能:当电流密度为0.5 A·g-1时,PB@PPy纳米复合材料的比电容为706 F·g-1,在5 A·g-1的电流密度下经过3 000次的充放电循环测试后,比电容保持率为70.48%。所合成的PB@PPy纳米复合材料在超级电容器中有较大的应用潜力。

Abstract:

As a new type of energy storage device, the performance of the supercapacitor has always been determined by the electrode material. Prussian blue(PB) square nanomaterials were prepared by a simple hydrothermal method, and polypyrrole(PPy) was successfully coated by in-situ oxidative polymerization to obtain PB@PPy nanocomposites. It was electrochemically tested in 1 mol/L KOH electrolyte. The results show excellent electrochemical performances: the specific capacitance of PB@PPy nanocomposites is 706 F·g-1 at a current density of 0.5 A·g-1, and the specific capacitance retention rate is 70.48% after 3 000 charge-discharge cycles at a current density of 5 A·g-1. The synthesized PB@PPy nanocomposites have great applications potential for supercapacitor.

参考文献

[1] MENG Q F,CAI K F,CHEN Y X,et al.Research progress on conducting polymer based supercapacitor electrode mate-rials[J].Nano Energy,2017,36:268-285.

[2] LIBICH J,J MáCA J,VONDRáK J,et al.Supercapacitors:properties and applications[J].Journal of Energy Storage,2018,17:224-227.

[3] CHMIOLA J,YUSHIN G,GOGOTSI Y,et al.Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J].Science,2006,313(5794):1760-1763.

[4] WANG F X,WU X W,YUAN X H,et al.Latest advances in supercapacitors:from new electrode materials to novel device designs[J].Chemical Society Reviews,2017,46(22):6816-6854.

[5] WANG H L,DAI H J.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J].Chemical Society Reviews,2013,42(7):3088-3113.

[6] ZHONG C,DENG Y D,HU W B,et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J].Chemical Society Reviews,2015,44(21):7484-7539.

[7] MALVANKAR N S,VARGAS M,NEVIN K P,et al.Tunable metallic-like conductivity in microbial nanowirenetworks[J].Nature Nanotechnology,2011,6(9):573-579.

[8] LI Y M,HAN X,YI T F,et al.Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J].Journal of Energy Chemistry,2019,31:54-78.

[9] KAUR R,KIM K H,PAUL A K,et al.Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks[J].Journal of Materials Chemistry:A,2016,4(11):3991-4002.

[10] LU W G,WEI Z W,GU Z Y,et al.Tuning the structure and function of metal-organic frameworks via linker design[J].Chemical Society Reviews,2014,43(16):5561-5593.

[11] GODA E S,LEE S,SOHAIL M,et al.Prussian blue and its analogues as advancedsupercapacitor electrodes[J].Journal of Energy Chemistry,2020,50:206-229.

[12] ZHANG G W,YAO H,ZHANG F,et al.A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors[J].Nano Research,2019,12(5):1061-1069.

[13] SUN X Y,LI S Q,LIU R M,et al.A three-dimensional heterogeneous ZnCo-PBA@α-Co(OH)2 nanostructure for high-performance supercapacitors[J].Journal of Nanoparticle Research,2020,22(2):37-1-37-12.

[14] KAZAZI M,FARYABI M.Electrochemically anchored manganese hexacyanoferrate nanocubes on three-dimensional porous graphene scaffold:towards a potential application in high-performance asymmetric supercapacitors[J].Journal of Power Sources,2020,449:227510-1-227510-12.

[15] MORETTI G,GERVAIS C.Raman spectroscopy of the photosensitive pigment Prussian blue[J].Journal of Raman Spectroscopy,2018,49(7):1198-1204.

[16] XUE Q,LI L,HUANG Y X,et al.Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating[J].ACS applied Mate-rials & Interfaces,2019,11(25):22339-22345.

[17] LIU J L,ZHOU W W,LAI L F,et al.Three dimensionals α-Fe2O3/polypyrrole (Ppy) nanoarray as anode for micro lithium ion batteries[J].Nano Energy,2013,2(5):726-732.

[18] WANG J G,ZHANG Z Y,ZHANG X Y,et al.Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors[J].Nano Energy,2017,39:647-653.

[19] YIN X M,LI H J,YUAN R M,et al.General formation of Prussian blue analogue microtubes for high-performance Na-ion hybrid supercapacitors[J].Science China Mate-rials,2020,63(5):739-747.

[20] YAO S R,XIAO P X,XIAO L Y,et al.Developing binder-free electrode based on metal-organic frameworks and graphene hydrogel for electrochemical energy storage[J].Energy Technology,2021,9(7):2100121-1-2100121-9.

[21] WANG J G,ZHANG Z Y,LIU X R,et al.Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor[J].Electrochimica Acta,2017,235:114-121.

[22] LUO M,DOU Y Y,KANG H,et al.A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes[J].Journal of Solid State Electrochemistry,2015,19(6):1621-1631.

[23] WANG Y,ZHONG H,HU L,et al.Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors[J].Journal of Materials Chemistry:A,2013,1(7):2621-2630.

基本信息:

DOI:10.13250/j.cnki.wndz.2022.09.006

中图分类号:TM53;TB332

引用信息:

[1]赵匡健,卞梓垚,李宽等.聚吡咯包覆的普鲁士蓝电极材料制备及其电化学性能[J].微纳电子技术,2022,59(09):869-874+890.DOI:10.13250/j.cnki.wndz.2022.09.006.

基金信息:

国家自然科学基金资助项目(51672172,51872186,51971128,52171185); 上海市优秀学术/技术带头人计划项目(20XD1401800); 上海市科委项目(19020501000); 微机电系统浙江省工程研究中心开放课题基金资助项目(MEMSZJERC2205); 校企合作横向项目(H2021-271)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文