189 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
为解决以导电油墨为主的气溶胶喷印技术中存在的油墨存储条件苛刻、过喷及卫星滴液等问题,提出一种纳米颗粒气溶胶喷印技术。该技术以纳米银粉为喷印材料,借助气体动能将纳米颗粒均匀、精准地喷印沉积在基底上。通过物理模型分析载气流量、喷印速度、鞘气流量、喷印层数等实验因素对导电银线形貌的影响。设计正交实验探究不同实验因素对喷印过程的影响,验证不同实验因素对喷印导电银线形貌的影响规律,并对导电银线进行烧结处理,分析其烧结前后电阻值、电阻率的变化。实验结果表明:载气流量、喷印层数对导电银线形貌的影响程度较大,喷印速度、鞘气流量影响程度较小。烧结过后,导电银线的电阻值大幅减小,电阻率显著降低,喷印所得导电银线最小电阻率为10.47μΩ·cm,约为银电阻率的6.62倍。
Abstract:In order to solve the problems of stringent ink storage conditions, overspray and satellite droplets in aerosol printing technology based on conductive ink, a nanoparticle aerosol printing technology was proposed. The technology used nano silver powder as printing material, and used gas kinetic energy to spray and deposite nanoparticles uniformly and accurately on the substrate. Using a physical modeling approach, the effects of experimental factors such as carrier gas flow rate, printing speed, sheath gas flow rate and number of printing layers on the morphology of conductive silver lines were analyzed. Orthogonal experiment was designed to investigate the influence of different experimental factors on the printing process and verify the influence law of different experimental factors on the morphology of conductive silver lines. The conductive silver lines were sintered, and the changes of resistance and resistivity before and after sintering were analyzed. The experimental results show that the carrier gas flow rate and the number of printing layers have great influence on the morphology of conductive silver lines, while the printing speed and sheath gas flow rate have little influence. After sintering, the resistance value and resistivity of the conductive silver wire decreased significantly, and the minimum resistivity of the printed conductive silver lines is 10.47 μΩ·cm, which is about 6.62 times that of the silver resistivity.
[1] 张鑫明,郭拉凤,张远明,等.气溶胶喷墨打印工艺参数对图案精度的影响 [J].微纳电子技术,2018,55(9):688-693.ZHANG X M,GUO L F,ZHANG Y M,et al.Influences of aerosol inkjet printing process parameters on the pattern accuracy [J].Micronanoelectronic Technology,2018,55(9):688-693(in Chinese).
[2] FENG J Q,RENN M J.Aerosol jet? direct-write for microscale additive manufacturing [J].Journal of Micro and Nano-Manufacturing,2019,7(1):011004.
[3] LEE G,KIM S J,PARK J K.Bioprinting of heterogeneous and multilayered cell-hydrogel constructs using continuous multi-material printing and aerosol-based crosslinking [J].STAR Protocols,2022,3(2):101303.
[4] LU S H,ZHENG J,CARDENAS J A,et al.Uniform and stable aerosol jet printing of carbon nanotube thin-film transistors by ink temperature control [J].ACS Applied Mate-rials & Interfaces,2020,12(38):43083-43089.
[5] JING Q S,PACE A,IVES L,et al.Aerosol-jet-printed,conformable microfluidic force sensors [J].Cell Reports Physical Science,2021,2(4):100386.
[6] FENG J,KLETT J D,RENN M J.Mist generation beha-vior in ultrasonic atomizer for aerosol jet? printing [J].Aerosol Science and Engineering,2024,8(1):77-86.
[7] ZHANG H N,CHOI J P,MOON S K,et al.A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology [J].Additive Manufacturing,2020,33:101096.
[8] WILLIAMS N X,WATSON N,JOH D Y,et al.Aerosol jet printing of biological inks by ultrasonic delivery [J].Biofabrication,2020,12(2):025004.
[9] GRAMLICH G,HUBER R,H?SLICH F,et al.Process considerations for aerosol-jet printing of ultra fine features [J].Flexible and Printed Electronics,2023,8(3):035002.
[10] EFIMOV A A,POTAPOV G,NISAN A,et al.Application of the spark discharge generator for solvent-free aerosol jet printing [J].Oriental Journal of Chemistry,2017,33(2):1047-1050.
[11] EFIMOV A A,ARSENOV P V,PROTAS N V,et al.Dry aerosol jet printing of conductive silver lines on a heated silicon substrate [J].IOP Conference Series:Materials Science and Engineering,2018,307:012082.
[12] EFIMOV A A,ARSENOV P V,VOLKOV I A,et al.Study of aerosol jet printing with dry nanoparticles synthesized by spark discharge [J].Journal of Physics:Confe-rence Series,2017,917:092020.
[13] KORNYUSHIN D V,EFIMOV A A,BUCHNEV A I,et al.Laser sintering of oxidized copper nanoparticles deposited by dry aerosol printing [J].Journal of Physics:Confe-rence Series,2021,2086(1):012019.
[14] 舒霞云,王策,常雪峰,等.鞘气辅助空气动力学透镜聚焦的干法气溶胶喷印实验研究 [J].中国机械工程,2024,35(1):152-159.SHU X Y,WANG C,CHANG X F,et al.Experimental study on dry aerosol printing with sheath gas assisted aerodynamic lens focusing [J].China Mechanical Engineering,2024,35(1):152-159(in Chinese).
[15] BINDER S,GLATTHAAR M,R?DLEIN E.Analytical investigation of aerosol jet printing [J].Aerosol Science and Technology,2014,48(9):924-929.
[16] 刘波.纳米颗粒气溶胶喷印系统设计与实验研究[D].厦门:厦门理工学院,2022.
[17] 张晓城.双层鞘气结构的气溶胶喷印系统设计及实验研究[D].厦门:厦门理工学院,2021.
[18] MAHAJAN A,FRISBIE C D,FRANCIS L F.Optimization of aerosol jet printing for high-resolution,high-aspect ratio silver lines [J].ACS Applied Materials & Interfaces,2013,5(11):4856-4864.
基本信息:
DOI:10.13250/j.cnki.wndz.25010503
中图分类号:TP391.73;TB383.1
引用信息:
[1]陈赛,舒霞云,常雪峰等.纳米颗粒气溶胶喷印参数的正交实验研究[J].微纳电子技术,2025,62(01):150-157.DOI:10.13250/j.cnki.wndz.25010503.
基金信息:
国家自然科学基金面上项目(51975501); 福建省自然科学基金资助项目(2022J011243)