162 | 1 | 3 |
下载次数 | 被引频次 | 阅读次数 |
针对当前6G无线通信系统对3 mm毫米波器件的需求急速增加,为了提前应对在这一频段的通信协议划分,利用金属谐振腔和矩形波导设计出一款中心频率为102.03 GHz的单频带通滤波器。然后,基于多模传输理论将其优化为一款中心频率分别为96.83和106.31 GHz的单通道双频带通腔体滤波器。采用交叉耦合的方式引入传输零点,设计出一款在98~105 GHz的工作范围内,具有98.49、99.79和104.20 GHz三个中心频率的超窄带三频带通腔体滤波器,其3 dB相对带宽分别为0.32%、0.63%和0.30%。采用基于SU-8负性光刻胶的UV-LIGA工艺对样品进行加工,并使用搭建的W波段电磁性能测试平台完成对样品射频性能的测试,测试结果与仿真结果具有良好的一致性。
Abstract:In view of the rapid increase in the demand for 3 mm millimeter-wave devices in the current 6G wireless communication system, and for dealing with the communication protocol division in the frequency band in advance, a single-band bandpass filter with a center frequency of 102.03 GHz was designed with metal resonator and rectangular waveguide. Then, based on the multimode transmission theory, it was optimized into a single-channel dual-band bandpass cavity filter with the center frequencies of 96.83 and 106.31 GHz, respectively. Finally, an ultra-narrowband triple-band bandpass cavity filter with three center frequencies of 98.49, 99.79 and 104.20 GHz in the working range of 98-105 GHz was designed by introducing transmission zeros through cross-coupling. The 3 dB relative bandwidths are 0.32%, 0.63% and 0.30%, respectively. The sample was fabricated by UV-LIGA process based on SU-8 negative photoresist, and the RF performance was tested by W-band electromagnetic performance test platform. The test results are in good agreement with the simulation results.
[1] 谢拥军,王正鹏,苗俊刚,等.5G射频室内测试的关键技术[J].电子技术应用,2018,44(7):5-10.
[2] 朱敏,张教,华炳昌,等.面向6G的太赫兹光纤一体融合通信系统:架构、关键技术与验证[J].中国科学:信息科学,2023,53(1):191-210.
[3] 魏克军,赵洋,徐晓燕.6G愿景及潜在关键技术分析[J].移动通信,2020,44(6):17-21.
[4] GUI G,LIU M,TANG F X,et al.6G:opening new horizons for integration of comfort,security and intelligence[J].IEEE Wireless Communications,2020,27(5):126-132.
[5] HAN M,WANG C Z,LIU C,et al.A wideband microstrip-to-waveguide transition using E-plane probe with parasitic patch for W-band application[J].Applied Sciences,2022,12(23):12162-1-12162-10.
[6] 肖红,段俊萍,张斌珍,等.基于耦合结构的W波段波导滤波器的设计[J].微纳电子技术,2018,55(2):105-109.
[7] XU J,DING J Q,ZHAO Y,et al.W-band broadband waveguide filter based on H-plane offset coupling[J].Journal of Infrared,Millimeter,and Terahertz Waves,2019,40:412-418.
[8] NOCELLA V,PELLICCIA L,TOMASSONI C,et al.Miniaturized dual-band waveguide filter using TM dielectric-loaded dual-mode cavities[J].IEEE Microwave and Wireless Components Letters,2016,26(5):3828-3835.
[9] DOUMANIS E,LEI G,GOUSSETIS G,et al.Dual-band bandpass double ground plane coaxial resonators and filters[J].IEEE Transactions on Microwave Theory and Techniques,2018,66(8):310-312.
[10] MELGAREJO J C,COGOLLOS S,GUGLIELMI M,et al.A new family of multiband waveguide filters based on a folded topology[J].IEEE Transactions on Microwave Theory and Techniques,2020,68(7):2590-2600.
[11] GUO C,SHANG X B,LANCASTER M J,et al.A 290-310 GHz single sideband mixer with integrated waveguide filters[J].IEEE Transactions on Terahertz Science and Technology,2018,8(4):446-454.
[12] TIFENN M,ANTHONY G,TAN P V,et al.Self-temperature-compensated air-filled substrate-integrated waveguide cavities and filters[J].IEEE Transactions on Microwave Theory and Techniques,2018,66(8):3611-3621.
[13] 翟琼华,欧毅,薛晨阳,等.SIW交指带通滤波器的设计与仿真[J].传感技术学报,2015,35(3):1379-1383.
[14] 褚庆昕,林景裕,王世伟.多模腔体滤波器和多工器研究[J].微波学报,2020,28(9):17-24.
[15] XIAO H,DUAN J P,ZHANG B Z,et al.Design and characterization of millimeter-wave micromachined polymer-based cavity filter with resonant cylinders[J].Sensors and Actuators:A,2018,284:242-250.
[16] 谢处方,饶克谨.电磁场与电磁波[M].4版.北京:高等教育出版社,2006:272-291.
基本信息:
DOI:10.13250/j.cnki.wndz.2023.07.011
中图分类号:TN713.5
引用信息:
[1]屈增,秦瑞杰,王佳云等.基于UV-LIGA工艺的超窄带毫米波三频带通滤波器[J].微纳电子技术,2023,60(07):1077-1085.DOI:10.13250/j.cnki.wndz.2023.07.011.
基金信息:
国家自然科学基金(52175555); 山西省基础研究计划青年项目(202203021212146); 山西重点研发项目(国际合作)获得山西省“1331工程”重点学科建设基金(20183D421043); 山西省创新社区基金(51821003)