nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 01, v.59 25-30
超级电容器电极材料VS4@PPy的制备及其电化学性能
基金项目(Foundation): 国家自然科学基金资助项目(51971128,52171185); 上海市优秀学术/技术带头人计划资助项目(20XD1401800); 上海市科委项目(19020501000)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2022.01.004
摘要:

探索具有优异电化学性能的电极材料是推进超级电容器发展的关键,设计优化过渡金属硫化物并研究其电化学性能对超级电容器的发展和应用至关重要。具有多种不同形貌的VS4正是研究重点之一。采用简单的一步水热法制备了花状VS4纳米材料,通过原位氧化聚合法在VS4上包覆聚吡咯(PPy),得到VS4@PPy纳米复合材料。PPy出色的导电性提高了VS4的电化学性能,在三电极体系下测试VS4@PPy电极电化学性能,结果表明VS4@PPy复合电极具有良好的比容量:在电流密度为1 A·g-1时,所合成的电极比容量为372 C·g-1。所合成的VS4@PPy复合材料为超级电容器的电极材料提供了选择。

Abstract:

Exploring electrode materials with excellent electrochemical properties is the key to promote the development of supercapacitors. The design and optimization of transition metal sulfides and the study of their electrochemical properties are crucial to the development and application of supercapacitors. VS4 with a variety of different morphologies is one of the research focuses. The flower-like VS4 nanomaterial was prepared by a simple one-step hydrothermal method and was coated with polypyrrole(PPy) by in-situ oxidative polymerization to obtain VS4@PPy nanocomposites. The excellent conductivity of PPy improves the electrochemical performance of VS4. Electrochemical properties of VS4@PPy electrode were tested in the three-electrode system. The result shows that VS4@PPy composite electrode has good specific capacity, and the specific capacity of the synthesized electrode is 372 C·g-1 at a current density of 1 A·g-1. The synthesized VS4@PPy composite material provides selection for electrode materials of supercapacitors.

参考文献

[1] YU L,HU H,WU H B,et al.Complex hollow nanostructures:synthesis and energy-related applications[J].Advanced Materials,2017,29(15):1604563-1-1604563-4.

[2] ZHAO Y,WANG L P,SOUGRATI M T,et al.A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J].Advanced Energy Materials,2017,7(9):1601424-1-1601424-8.

[3] GOODENOUGH J B,KIM Y.Challenges for rechargeable Li batteries[J].Chemistry of Materials,2010,22(3):587-603.

[4] CHEN M,ZHANG Y F,Y LIU Y Y,et al.Three-dimensional network of vanadium oxyhydroxide nanowires hybri-dize with carbonaceous materials with enhanced electrochemical performance for supercapacitor[J].ACS Applied Energy Materials,2018,1(10):5527-5538.

[5] PATIL S,HARLE A,SATHAYE S,et al.Development of a novel method to grow mono-/few-layered MoS2 films and MoS2-graphene hybrid films for supercapacitor applications[J].CrystEngComm,2014,16(47):10845-10855.

[6] BHANDAVAT R,DAVID L,SINGH G.Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes[J].Journal of Physical Chemistry Letters,2012,3(11):1523-1530.

[7] PENG S J,LI L L,TAN H T,et al.MS2 (M=Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics[J].Advanced Functional Materials,2014,24(15):2155-2162.

[8] PHAM D T,SAMBANDAM B,KIM S,et al.A zero fading sodium ion battery:high compatibility microspherical patronite in ether-based electrolyte[J].Energy Storage Materials,2018,19:1-11.

[9] PANDIT B,BOMMINEEDI L K,SANKAPAL B R.Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure[J].Journal of Energy Chemistry,2019,31:79-88.

[10] RAKHI R B,ALHEBSHI N A,ANJUM D H,et al.Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors[J].Journal of Materials Chemistry:A,2014,2(38):16190-16198.

[11] ROUT C S,KIM B H,XU X D,et al.Synthesis and cha-racterization of patronite form of vanadium sulfide on graphitic layer[J].Journal of the American Chemical Society,2013,135(23):8720-8725.

[12] LI H Y,FENG J K,XIANG L,et al.Facile synthesis of bio-inspired anemone-like VS4 nanomaterials for long-life supercapacitors with high energy density[J].Journal of Power Sources,2020,457:228031-1-228031-9.

[13] WANG X F,ZHANG Y F,ZHENG J Q,et al.Hydrothermal synthesis of VS4/CNTs composite with petal-shape structures performing a high specific capacity in a large potential range for high-performance symmetric supercapacitors[J].Journal of colloid and interface science,2019,554:191-201.

[14] ZHOU Y L,LI Y L,YANG J,et al.Conductive polymer coated VS4 sub-microspheres as advanced electrode materials in lithium-ion batteries[J].ACS Applied Materials & Interfaces,2016,8(29):18797-1-18797-11.

基本信息:

DOI:10.13250/j.cnki.wndz.2022.01.004

中图分类号:TM53;TB332

引用信息:

[1]赵匡健,卞梓垚,李宽等.超级电容器电极材料VS_4@PPy的制备及其电化学性能[J].微纳电子技术,2022,59(01):25-30.DOI:10.13250/j.cnki.wndz.2022.01.004.

基金信息:

国家自然科学基金资助项目(51971128,52171185); 上海市优秀学术/技术带头人计划资助项目(20XD1401800); 上海市科委项目(19020501000)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文