nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 08, v.60 1247-1255
基于电流体动力学喷印法的胶体量子点MEMS气体传感器性能
基金项目(Foundation): 国家自然科学基金(61922032); 湖北省自然科学基金(2022CFA035)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2023.08.010
摘要:

针对传统的成膜工艺无法实现在百微米级并且结构悬空的微电子机械系统(MEMS)基板上实现气敏薄膜制备的问题,利用电流体动力学(EHD)喷印技术结合氧化钨(WO3)胶体量子点进行气敏薄膜的无掩模沉积。考虑MEMS基板对沉积精度和工艺条件要求较高,因此首先基于EHD理论建立EHD喷印的数值模型,模拟锥射流形成过程以及电压、油墨属性等因素对锥射流稳定性的影响,并采用实验进行对比分析,验证仿真的有效性并制备出符合喷印的墨水,后采用EHD喷印制备MEMS气体传感器。实验结果表明,利用EHD喷印方法制备的WO3气体传感器的薄膜致密均匀,在150℃下功耗仅20 mW,对体积分数5×10-6 NO2的响应值约为10,能实现体积分数5×10-7~1×10-5的NO2检测,检测下限低至1.6×10-7,具有优异的气敏性能。

Abstract:

Aiming at the problem that the traditional film forming process can not realize the preparation of gas-sensitive films on the hundred-micrometer-level and structurally suspended micro-electromechanical system(MEMS) substrates, electrohydrodynamic(EHD) printing technology combined with tungsten oxide(WO3) colloidal quantum dots was used to deposit gas-sensitive films without mask. Considering the high requirements of the MEMS substrate on deposition accuracy and process conditions, a numerical model of EHD printing was first established based on EHD theory to simulate the formation process of cone jet and the influences of voltage, ink properties and other factors on the stability of the cone jet. Experiments were conducted for comparative analysis to verify the effectiveness of the simulation and prepare ink suitable for the printing. Then the MEMS gas sensor was prepared by EHD printing. The experimental results show that the film of the WO3 gas sensor prepared by EHD printing method is dense and uniform, the power consumption of the WO3 gas sensor is only 20 mW at 150 ℃, and the response value to NO2 with a volume fraction of 5×10-6 is a bout 10. The detection of the NO2 with a volume fraction of 5×10-7-1×10-5 can be realized by the gas sensor, and the limit of detection is as low as 1.6×10-7, demonstrating that it has excellent gas sensitive properties.

参考文献

[1]XUE N Z,ZHANG Q Y,ZHANG S P,et al.Highly sensitive and selective hydrogen gas sensor using the mesoporous SnO2 modified layers[J].Sensors,2017,17(10):2351-1-2351-17.

[2]ZHANG S,SONG P,LI J,et al.Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde[J].Sensors and Actuators:B,2017,241:1130-1138.

[3]曾吉阳,荣倩,邓细宇,等.WO3气敏传感材料及器件的研究进展[J].功能材料,2020,51(12):12065-12071.

[4]LIU H,LI M,VOZNYY O,et al.Physically flexible,rapid-response gas sensor based on colloidal quantum dotsolids[J].Advanced Materials,2014,26(17):2718-2724.

[5]KANG J,PARK J S,LEE H J.Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHO[J].Sensors and Actuators:B,2017,248:1011-1016.

[6]WANG Y,LIU C Y,WANG Z,et al.Sputtered SnO2∶NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors[J].Sensors and Actuators:B,2019,278:28-38.

[7]SINGH V,SINHA J,NANDA A,et al.Precursor to gas sensor:a detailed study of the suitability of copper complexes as an MOCVD precursor and their application in gassensing[J].Inorganic Chemistry,2021,60(22):17141-17150.

[8]BAGOLINI A,GAIARDO A,CRIVELLARI M,et al.Deve-lopment of MEMS MOS gas sensors with CMOS compatible PECVD inter-metal passivation[J].Sensors and Actuators:B,2019,292:225-232.

[9]BRIAND D,KRAUSS A,van der SCHOOT B,et al.Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors[J].Sensors and Actuators:B,2000,68(1/2/3):223-233.

[10]LIU X H,ZHANG J,GUO X Z,et al.Amino acid-assisted one-pot assembly of Au,Pt nanoparticles onto one-dimensional ZnO microrods[J].Nanoscale,2010,2(7):1178-1184.

[11]MOON S E,LEE H K,CHOI N J,et al.Low power consumption micro C2H5OH gas sensor based on micro-heater and screen printing technique[J].Sensors and Actuators:B,2013,187:598-603.

[12]MISHRA S,BARTON K L,ALLEYNE A G,et al.High-speed and drop-on-demand printing with a pulsedelectrohydrodynamic jet[J].Journal of Micromechanics and Microengineering,2010,20(9):095026-1-095026-8.

[13]崔歆,杨建军.电压对电喷印影响的数值模拟及实验研究[J].机械工程师,2017 (4):9-11.

[14]KANG K N,YANG J D,PARK J H,et al.Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications[J].Sensors and Actuators:B,2017,250:574-583.

[15]WU H,YU J,CAO R,et al.Electrohydrodynamic inkjet printing of Pd loaded SnO2 nanofibers on a CMOS micro hotplate for low power H2 detection[J].AIP Advances,2018,8:055307-1-055307-7.

[16]SAVILLE D A.Electrohydrodynamics:the Taylor-Melcher leaky dielectric model[J].Annual Review of Fluid Mecha-nics,1997,29(1):27-64.

[17]PARK J,KIM B,KIM S Y,et al.Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink[J].Applied Physics:A,2014,117:2225-2234.

[18]PAN Y,ZENG L.Simulation and validation of droplet generation process for revealing three design constraints inelectrohydrodynamic jet printing[J].Micromachines,2019,10(2):94-106.

[19]杨建军,张志远,兰红波,等.基于 EHD 微尺度 3D 打印喷射机理与规律研究[J].农业机械学报,2016,47(6):401-407.

[20]JAENSOOON N O,HULSEN M A,ANDERSON P D,et al.Stokes-Cahn-Hilliard formulations and simulations of two-phase flows with suspended rigid particles[J].Computers & Fluids,2015,111:1-17.

[21]HOLMAN J P.Heattransfer[M].9th ed.New York:McGraw-Hill Companies,2002.

[22]INCROPERA F P,DEWITT D P,BERGMAN T L,et al.Fundamentals of heat and mass transfer[M].6th ed.Hoboken:John Wiley and Sons,2007.

[23]YU H X,SONG Z L,LIU Q,et al.Colloidal synthesis of tungsten oxide quantum dots for sensitive and selective H2S gas detection[J].Sensors and Actuators:B,2017,248:1029-1036.

[24]王艳洁,那广水,王震,等.检出限的涵义和计算方法[J].化学分析计量,2012,21(5):85-88.

[25]LI J,LU Y J,YE Q,et al.Carbon nanotube sensors for gas and organic vapor detection[J].Nano Letters,2003,3(7):929-933.

[26]CHANG T J,HSUEH T J.A NO2 gas sensor with a TiO2 nanoparticles/ZnO/MEMS-structure that is produced using ultrasonic wave grinding technology[J].Journal of the Electrochemical Society,2020,167(2):027521-1-027521-5.

[27]LEE J,KIM J,IM J P,et al.MEMS-based NO2 gas sensor using ZnO nano-rods for low-power IoT application[J].Journal of the Korean Physical Society,2017,70:924-928.

[28]BEHERA B,CHANDRA S.Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application[J].Materials Science in Semiconductor Processing,2018,86:79-84.

[29]FAN X X,XU Y J,HE W M,et al.UV-enhanced NO2 gas sensor based on electrospinning SnO2-ZnO composite nanofibers[C]// Proceedings of IOP Conference Series:Materials Science and Engineering.Sanya,China,2019,479:012121-1-012121-6.

基本信息:

DOI:10.13250/j.cnki.wndz.2023.08.010

中图分类号:TB383.1;TP212;O361

引用信息:

[1]欧阳梦,李华曜,田枝来等.基于电流体动力学喷印法的胶体量子点MEMS气体传感器性能[J].微纳电子技术,2023,60(08):1247-1255.DOI:10.13250/j.cnki.wndz.2023.08.010.

基金信息:

国家自然科学基金(61922032); 湖北省自然科学基金(2022CFA035)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文