nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 08, v.60 1308-1315
Co3O4@NC的制备及其电化学性能
基金项目(Foundation): 国家自然科学基金(51672172,51872186,51971128,52171185)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2023.08.018
摘要:

过渡金属氧化物是一种超级电容器电极材料。采用共沉淀法制备了立方体Co类普鲁士蓝(Co-PBA)纳米材料,先将Co-PBA在氮气中进行退火,PBA衍生为掺氮的碳纳米盒,得到产物Co@NC,再在空气中250℃下退火,得到Co3O4@NC纳米复合材料。Co-PBA材料的微观结构为盒状并均匀分布,平均尺寸约为500 nm。在三电极体系下测试其电化学性能,循环伏安(CV)测试结果显示在不同电流密度下曲线具有相似的形状,拥有良好的对称性,说明该材料制备的电极在充放电时的可逆性较好。Co3O4@NC复合材料在电流密度1 A/g时的比电容为1 000.02 F/g,在电流密度5 A/g下充放电2 500次后电容保持率为97.29%,保持了良好的循环稳定性。实验结果表明,Co3O4@NC复合材料是一种很有前途的超级电容器电极材料。

Abstract:

Transition metal oxide is a kind of electrode material for supercapacitors. The cubic Co Prussian blue analogue(Co-PBA) nano-materials were prepared by coprecipitation method. Co-PBA was first annealed in nitrogen, and PBA was derived into a nitrogen-doped nano carbon box to obtain the product Co@NC. Then it was annealed at 250 ℃ in air to obtain Co3O4@NC nanocomposite. The microstructure of Co-PBA material is in the shape of nanoboxes and uniformly distributed, with an average size of about 500 nm. The electrochemical properties were tested in a three electrode system. And the cyclic voltammetry(CV) test results show that the curves have similar shapes under different current densities and have good symmetry, indicating that the electrode prepared by the material has good reversibility during charging and discharging. The specific capacitance of the Co3O4@NC nanocomposite is 1 000.02 F/g at a current density of 1 A/g, and the capacitance retention rate is 97.29% after 2 500 charge-discharges at a current density of 5 A/g, which maintains a good cycle stability. The results show that Co3O4@NC composite is a promising electrode material for supercapacitors.

参考文献

[1] LIU T,JIANG C J,CHENG B,et al.Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance[J].Journal of Power Sources,2017,359:371-378.

[2] LIU N,SU Y L,WANG Z Q,et al.Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors[J].ACS Nano,2017,11(8):7879-7888.

[3] YU Z Y,CHENG Z X,WANG X L,et al.High area-speci-fic capacitance of Co(OH)2/hierarchical nickel/nickel foam supercapacitors and increase with cycling[J].Journal of Materials Chemistry:A,2017,5(17):7968-7978.

[4] ZHANG K,ZHANG L L,ZHAO X S,et al.Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J].Chemistry of Materials,2010,22(4):1392-1401.

[5] JIANG J,LI Y Y,LIU J P,et al.Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J].Advanced Materials,2012,24(38):5166-5180.

[6] UMAR A,RAUT S D,IBRAHIM A A,et al.Perforated Co3O4 nanosheets as high-performing supercapacitor material[J].Electrochimica Acta,2021,389:138661-1-138661-9.

[7] ZHENG S S,LI X R,YAN B Y,et al.Transition-metal (Fe,Co,Ni) based metal-organic frameworks for electrochemical energy storage[J].Advanced Energy Materials,2017,7(18):1602733-1-1602733-27.

[8] GENG C,WEI P,CHEN H M,et al.Promoting the hole extraction and interfacial performance with MOFs derived Co3O4@NC for efficient carbon-based perovskite solar cells[J].Chemical Engineering Journal,2021,414:128878-1-128878-10.

[9] LUO S J,LI X M,ZHANG B H,et al.MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions[J].ACS Applied Materials & Interfaces,2019,11(30):26891-26897.

[10] JIANG L L,LI Y J,LUO D,et al.Free-standing RGO-Co3O4-polypyrrole composite films as electrodes for supercapacitors[J].Energy Technology,2018,7(3):1800606-1-1800606-16.

[11] DENG L Q,YANG Z,TAN L L,et al.Investigation of the Prussian Blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries[J].Advanced Materials,2018,30(31):1802510-1-1802510-7.

[12] YAO W Q,ZHENG W Z,XU J,et al.ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J].ACS Nano,2021,15(4):7114-7130.

[13] DU W,LIU R M,JIANG Y W,et al.Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor[J].Journal of Power Sources,2013,227:101-105.

[14] VIJAYAKUMAR S,PONNALAGI A K,NAGAMUTHU S,et al.Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors[J].Electrochi-mica Acta,2013,106:500-505.

[15] DENG J C,KANG L T,BAI G L,et al.Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials[J].Electrochimica Acta,2014,132(19):127-135.

[16] DU W,LIU R M,JIANG Y W,et al.Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor[J].Journal of Power Sources,2013,227:101-105.

[17] CHEN J L,XU Z F,ZHU H L,et al.An ultrafast supercapacitor built by Co3O4 with tertiary hierarchical architecture[J].Vacuum,2020,174:109219-1-109219-8.

[18] DUAN Y,HU T,YANG L,et al.Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors[J].Journal of Alloys and Compounds,2019,771:156-161.

[19] LIU T,ZHANG L Y,YOU W,et al.Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J].Small,2018,14(12):1702407-1-1702407-8.

[20] LI S M,YANG K,YA P W,et al.Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes[J].Applied Surface Science,2019,503:144090-1-144090-9.

[21] LIU G,KANG C X,FANG J,et al.MnO2 nanosheet-coated Co3O4 complex for 1.4 V extra-high voltage super-capacitors electrode material[J].Journal of Power Sources,2019,431:48-54.

基本信息:

DOI:10.13250/j.cnki.wndz.2023.08.018

中图分类号:TM53;TB332

引用信息:

[1]李慧芳,孙玉芹.Co_3O_4@NC的制备及其电化学性能[J].微纳电子技术,2023,60(08):1308-1315.DOI:10.13250/j.cnki.wndz.2023.08.018.

基金信息:

国家自然科学基金(51672172,51872186,51971128,52171185)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文