nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 11, v.60 1834-1841
MEMS气体传感器微热板芯片热均匀性设计及性能
基金项目(Foundation):
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2023.11.015
摘要:

基于微电子机械系统(MEMS)技术的气体传感器具有灵敏度高、尺寸小、响应速度快、功耗低等优点,成为下一代半导体气体传感器的重要发展方向,其中敏感氧化物材料的温度均匀性对其探测灵敏度、选择性和可靠性均有重要影响。聚焦MEMS气体传感器中的核心微热板芯片的设计,通过热学分析和物理场有限元仿真,设计了一种等温热区占比90%的微热板芯片,有效解决了MEMS气体传感器中微小芯片内大面积均匀加热问题。在此理论基础上,设计了两款微热板芯片结构并进行了表征。实际测试结果显示温度-功耗曲线与仿真结果一致,在372℃工作温度下,方形薄膜结构的微热板芯片单位面积功耗仅为2.8×10-4mW/2μm,但圆形薄膜结构的微热板芯片温度分布更均匀,两种设计的工作温度均可以达到370℃以上。受限于低温成膜工艺,该微热板芯片薄膜的最大应力仅为1500MPa左右,这为后续优化设计提升工作温度和降低功耗提供了一定参考。

Abstract:

Gas sensors based on micro-electromechanical system(MEMS) technology have the advantages of high sensitivity, small size, fast response speed and low power consumption, and become an important development direction of the next generation semiconductor gas sensors. The temperature uniformity of sensitive oxide materials has an important effect on its detection sensitivity, selectivity and reliability. By focusing on the design of the core micro-hotplate chip for MEMS gas sensor, a micro-hotplate chip with isothermal hot zone accounting for 90% was designed through thermal analysis and physical finite element simulation, effectively solving the problem of large area uniform heating within the micro-chip in MEMS gas sensors. Based on the theory, two kinds of micro-hotplate chip structures were designed and characterized. The actual test results show that the temperature-power consumption curves are consistent with the simulation results. At 372 ℃ working temperature, the power consumption per unit area of the micro-hotplate chip with a square thin film structure is only 2.8×10-4 m W/μm2, while the temperature distribution of the micro-hotplate chip with a circular thin film structure is more uniform, and the working temperature of the two designs is higher than 370 ℃. Limited by low temperature thin film forming process, the maximum stress of the micro-hotplate chip thin film is only about 1 500 MPa. This provides a certain reference for the subsequent optimization design to increase working temperature and reduce power consumption.

参考文献

[1] DAS I, BHATTACHARYYA R, SAHA H, et al. Enhanced response of Co-planar MEMS microheater-based methane gas sensor[J]. IEEE Sensors Journal, 2020, 20(23):14132-14140.

[2] CHIOU J C, TSAI S W, LIN C Y. Liquid phase deposition based Sn O2 gas sensor integrated with Ta N heater on a micro-hotplate[J]. IEEE Sensors Journal, 2013, 13(6):2466-2473.

[3] RAO L L R, SINGHA M K, SUBRAMANIAM K M, et al.Molybdenum microheaters for MEMS-based gas sensor applications:fabrication, electro-thermo-mechanical and response characterization[J]. IEEE Sensors Journal, 2017, 17(1):22-29.

[4] LOMBARDI A, GRASSI M, MALCOVATI P, et al. A CMOS integrated interface circuit for metal-oxide gas sensors[J]. Sensors and Actuators:B, 2009, 142(1):82-89.

[5] VAISHAMPAYAN M V, DESHMUKH R G, WALKE P,et al. Fe-doped Sn O2 nanomaterial:a low temperature hydrogen sulfide gas sensor[J]. Materials Chemistry and Physics, 2008,109:230-234.

[6] CARDINALI G C, DORI L, FIORINI M, et al. A smart sensor system for carbon monoxide detection[J]. Analog Integrated Circuits and Signal Processing, 1997, 14(3):275-296.

[7]李加明,焦明之,钱晨.低功耗微热板Zn O甲烷传感器仿真及性能研究[J].工程科学学报,2023,45(6):987-994.

[8] GUO L F, XU L, XU Z K, et al. Design and fabrication of micro-nano fusion gas sensor based on two-beam micro-hotplatform[J]. Microsystem Technologies, 2017, 23(7):2699-2705.

[9] LIU Q, DING G F, WANG Y P, et al. Thermal performance of micro hotplates with novel shapes based on singlelayer Si O2 suspended film[J]. Micromachines, 2018, 9(10):514-526.

[10] LAHLALIA A, le NEEL O, SHANKAR R, et al. Improved sensing capability of integrated semiconducting metal oxide gas sensor devices[J]. Sensors, 2019,19(2):374-388.

[11] ADEDOKUN G, GENG L, XIE D C, et al. Low power perforated membrane microheater[J]. Sensors and Actuators:A, 2021, 322:112607-1-112607-8.

[12] YUAN Z Y, YANG F, MENG F L, et al. Research of lowpower MEMS-based micro hotplates gas sensor:a review[J]. IEEE Sensors Journal, 2021, 21(17):18368-18380.

[13] FILIPOVIC L, SELBERHERR S. Thermo-electro-mechanical simulation of semiconductor metal oxide gas sensors[J]. Materials, 2019, 12(15):2410-2447.

[14] ZHAO W J, XU D, CHEN Y S, et al. A low-temperature micro hotplate gas sensor based on Al N ceramic for effective detection of low concentration NO2[J]. Sensors, 2019, 19(17):3719-3734.

[15] SIMON I, BARSAN N, BAUER M, et al. Micromachined metal oxide gas sensors:opportunities to improve sensor performance[J]. Sensors and Actuators:B, 2001, 73(1):1-26.

[16] PUIGCORBE J, VOGEL D, MICHEL B, et al. Thermal and mechanical analysis of micromachined gas sensors[J].Journal of Micromechanics and Microengineering, 2003, 13(5):548-556.

[17] CHIOU J C, TSAI S W, LIN C Y. Liquid phase deposition based Sn O2 gas sensor integrated with Ta N heater on a micro-hotplate[J]. IEEE Sensors Journal, 2013, 13(6):2466-2473.

[18] CHANG W Y, HSIHE Y S. Multilayer microheater based on glass substrate using MEMS technology[J]. Microelectronic Engineering, 2016, 149:25-30.

[19] WU H, YU J, LI Z Z, et al. Microhotplate gas sensors incorporated with Al electrodes and 3D hierarchical structured Pd O/Pd O2-S n O2∶Sb materials for sensitive VOC detection[J]. Sensors and Actuators:B, 2021, 329:128984-1-128984-13.

[20] CHEN Y L,LI M J,YAN W,et al.Sensitive and low-power metal oxide gas sensors with a low-cost microelectromechanical heater[J].ACS Omega,2021,6(2):1216-1222.

[21]沈伟强,赵将,马薇,等.基于MEMS的微热板结构设计与性能测试研究[J].仪表技术与传感器, 2022(4):19-24.

[22] TANG B L, SHI Y B, LI J W, et al. Design, simulation,and fabrication of multilayer Al2O3 ceramic micro-hotplates for high temperature gas sensors[J]. Sensors, 2022, 22(18):6778-6793.

基本信息:

DOI:10.13250/j.cnki.wndz.2023.11.015

中图分类号:TP212;TN40

引用信息:

[1]田昕,陶继方,庞子瑞等.MEMS气体传感器微热板芯片热均匀性设计及性能[J].微纳电子技术,2023,60(11):1834-1841.DOI:10.13250/j.cnki.wndz.2023.11.015.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文