220 | 9 | 5 |
下载次数 | 被引频次 | 阅读次数 |
粉末气溶胶喷印(P-AJP)技术是通过载气携带金属纳米颗粒形成气溶胶,其依靠气体动能将金属纳米颗粒均匀、稳定地喷印沉积至基底上,形成导电线路。采用气固两相流理论,建立喷印头内外流场模型,并应用FLUENT软件中的离散相模型分析计算不同喷印头鞘气层锥角和鞘气体积流量对粉末流场汇聚特性的影响。仿真结果表明,在送粉量一定的情况下,第一层鞘气层倾角为70°,第二鞘气层倾角为40°时粉末汇聚特性较好,粉末利用率较高。并以此角度模型为基础,通过模拟仿真和实验验证得出了第一层鞘气体积流量和第二层鞘气体积流量对粉末聚焦特性的变化趋势基本一致,喷印导线线宽及气溶胶颗粒轨迹线线宽都随着鞘气体积流量的增加而减小,其证明了模型的合理性和可靠性,为后续粉末气溶胶喷印中喷印头的结构设计和优化提供了参考。
Abstract:The powder aerosol jet printing(P-AJP) is a technology by carrying metal nano-particles in carrier gas to form an aerosol, which relies on the kinetic energy of the gas to uniformly and stably jet print and deposit the metal nanoparticles on the substrate to form a conductive circuit. Based on the gas-solid two-phase flow theory, the internal and external flow field models of the jet printing head were established, and the discrete phase model in the FLUENT software was used to analyze and calculate the influences of the cone angle of the sheath gas layer and the sheath gas volume flow rate of different jet printing heads on the convergence characteristics of the powder flow field. The simulation results show that when the powder feeding quantity is constant, the inclination angle of the first sheath gas layer is 70°, and the inclination angle of the second sheath gas layer is 40°, the powder convergence characteristics are better and the powder utilization rate is higher. Based on this angle model, through simulation and experimental verification, it is concluded that the change trends of the first layer sheath gas volume flow rate and the second layer sheath gas volume flow rate on the powder focusing characteristics are basically the same, and the line widths of jet printed wire and aerosol particle track line both decrease with the increase of sheath gas volume flow rate, which proves the rationality and reliability of the model, and provides reference for the structural design and optimization of the jet printing head in the subsequent powder aerosol jet printing.
[1] YANG C H,ZHOU E J,MIYANISHI S,et al.Preparation of active layers in polymer solar cells by aerosol jet printing[J].ACS Applied Materials & Interfaces,2011,3(10):4053-4058.
[2] HAN H V,LIN H Y,LIN C C,et al.Resonant-enhanced full-color emission of quantum-dot-based micro LED display tech-nology[J].Optics Express,2015,23(25):32504-32515.
[3] HE Y X,OAKLEY C,CHAHAL P,et al.Aerosol jet printed 24 GHz end-fire quasi-Yagi-Uda antenna on a 3-D printed cavity substrate[C]// Proceedings of International Workshop on Antenna Technology:Small Antennas,Innovative Structures,and Applications (iWAT).Athens,Greece,2017:179-182.
[4] NAZARENUS T,KITA J,MOOS R,et al.Laser-annealing of thermoelectric CuFe0.98Sn0.02O2 films produced by powder aerosol deposition method[J].Advanced Materials Interfaces,2020,7(22):2001114-1-2001114-13.
[5] SCHUBERT M,HANFT D,NAZARENUS T,et al.Powder aerosol deposition method—novel applications in the field of sensing and energy technology[J].Functional Materials Letters,2019,12(5):1930005-1-1930005-12.
[6] LEUPOLD N,DENNELER S,RIEGER G,et al.Powder treatment for increased thickness of iron coatings produced by the powder aerosol deposition method and formation of iron-alumina multilayer structures[J].Journal of Thermal Spray Technology,2021,30:480-487.
[7] EFIMOV A A,POTAPOV G N,NISAN A V,et al.Application of the spark discharge generator for solvent-free aerosol jet printing[J].Oriental Journal of Chemistry,2017,32(2):1047-1050.
[8] EFIMOV A A,ARSENOV P V,IVANOV V V,et al.Study of aerosol jet printing with dry nanoparticles synthesized by spark discharge[J].Journal of Physics Conference Series,2017,917(9):092020-1-092020-4.
[9] ARSENOV P V,EFIMOV A A,IVANOV V V.Effect of methods of changing in focusing ratio on line geometry in aerosol jet printing[J].Key Engineering Materials,2018,779:159-164.
[10] EFIMOV A A,POTAPOV G N,NISAN A N,et al.Controlled focusing of silver nanoparticles beam to form the microstructures on substrates[J].Results in Physics,2017,7:440-443.
[11] EFIMOV A A,ARSENOV P V,PROTAS N V,et al.Dry aerosol jet printing of conductive silver lines on a heated silicon substrate[J].Materials Science and Engineering,2018,307(1):012082-1-012082-4.
[12] WILKINSON N J,SMITH M A A,KAY R W,et al.A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing[J].The International Journal of Advanced Manufacturing Technology,2019,105(41):4599-4619.
[13] 张鑫明,郭拉凤,张远明,等.气溶胶喷墨打印工艺参数对图案精度的影响[J].微纳电子技术,2018,55(9):688-693.
[14] ZEKOVIC S,DWIVEDI R,KOVACEVIC R.Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition[J].International Journal of Machine Tools and Manufacture,2006,47(1):112-123.
[15] 张安峰,周志敏,李涤尘,等.同轴送粉喷嘴气固两相流流场的数值模拟[J].西安交通大学学报,2008,42(9):1169-1173.
[16] 邓珍波,梅筱琴,向召伟,等.载气式同轴送粉3D打印喷头粉末流场数值分析[J].四川大学学报(工程科学版),2016,48(S2):165-172.
[17] 王福军.计算流体动力学分析:CFD 软件原理与应用[M].北京:清华大学出版社有限公司,2004:7-9.
[18] LAUNDER B E,SPALDING D B.Lectures in mathematical model of turbulence[M].New York:Academic Press,1972:157-162.
[19] 胡晓冬,祝立强,姚建华.激光宽带熔覆侧向送粉喷嘴设计[J].轻工机械,2014,32(3):10-12.
[20] 雷定中,石世宏,傅戈雁.激光宽带熔覆光内送粉喷嘴准直气罩研制[J].激光技术,2015,39(5):590-593.
基本信息:
DOI:10.13250/j.cnki.wndz.2022.04.010
中图分类号:TN41
引用信息:
[1]刘波,舒霞云,常雪峰等.双层鞘气聚焦对气溶胶喷印粉末汇聚特性的影响[J].微纳电子技术,2022,59(04):365-372+378.DOI:10.13250/j.cnki.wndz.2022.04.010.
基金信息:
国家自然科学基金面上项目(51975501)