301 | 2 | 10 |
下载次数 | 被引频次 | 阅读次数 |
依据高场非对称波形离子迁移谱(FAIMS)原理,设计了一种迁移区和收集区一体化式的微型化FAIMS气体传感器。电离区采用能量为10.6e V的紫外灯对异丁烯气体进行电离,迁移区和收集区采用微电子机械系统(MEMS)工艺进行制备,将图形化后的硅片和硼硅玻璃通过阳极键合工艺制备成一体化的传感器,传感器尺寸为3mm×4mm×1mm。实验中,搭建了相应的测试系统,在收集区外接放大电路对异丁烯的电离进行了检测。将传感器在不同体积分数异丁烯环境中进行测试。测试结果表明,传感器测试精度可达1×10-7/m V,在体积分数2×10-4的异丁烯环境中其响应时间为6s,恢复时间为7s,具有较快的响应时间和恢复时间,且具有良好的稳定性和重复性。
Abstract:According to the principle of high-field asymmetric waveform ion mobility spectroscopy(FAIMS), a miniaturized FAIMS gas sensor with integrated migration area and collection area was designed. In the ionization region, the isobutene gas was ionized by an UV lamp with an energy of 10.6 e V. The migration area and collection area were prepared by micro-electromechanical system(MEMS)process, and the patterned silicon wafer and borosilicate glass were prepared into an integrated sensor with a size of 3 mm×4 mm×1 mm through an anodic bonding process. In the process of experiment, the corresponding test system was set up, an amplifier circuit was connected outside the collection area to detect the ionization of isobutene. The sensor was tested in isobutene environments with different volume fractions. The test results show that the test precision of the sensor can reach 1×10-7/m V, and in the isobutene environment with a volume fraction of 2×10-4, its response time and recovery time are 6 s and 7 s, respectively. The sensor has fast response time and recovery time and good stability and repeatability.
[1]PANG X B,SHAW M D,GILLOT S.The impacts of watervapour and co-pollutants on the performance of electrochemical gas sensor used for air quality monitoring[J].Sensors and Actuators:B,2018,266:674-684.
[2]PATIL J,PATIL A V,DIGHAVKAR C G,et al.Semiconductor metal oxide compounds based gas sensors:literature review[J].Frontiers of Materials Science,2015,9(1):14-37.
[3]BORSDORF H,NAZAROV G,MILLER R A.Time-offlight ion mobility spectrometry and differential mobility spectrometry:comparative study of their efficiency in the analysis of halogenated compounds[J].Talanta,2007,71(4):1804-1812
[4]KREBS D,ZAPATA A M,NAZAROV E G,et al.Detection of biological and chemical agents using differential mobility spectrometry (DMS)technology[J].IEEE Sensors Journal,2005,5 (4):696-703.
[5]ROGER G,RANDY P.Comparison of experimental and calculated peak shapes for three cylindrical geometry FAIMSprototypes of differing electrode diameters[J].Journal of the American Society for Mass Spectrometry,2005,16(3):349-362.
[6]LEVIN S,VOUROS P,MILLER R A,et al.Using a nanoelectrospray-differential mobility spectrometer-mass spectrometer system for analysis of oligosaccharides with solvent selected control over ESI aggregate ion formation[J].Journal of the American Society for Mass Spectrometry,2007,18 (3):502-511.
[7]LI H,TANG F,WANG H,et al.Design of a biochemistry sensorbasedonFAIMStheoryandoptimizationdesignconsidering brim-effect of electrical field[C]//Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering.Shanghai,China,2008:955-958.
[8]林丙涛,陈池来,孔德义,等载气流速对高场不对称波形离子迁移谱的影响[J].分析化学,2010,38 (7):1027-1030.
[9]SPANGLER E,MILLER R A.Application of mobility theory to the interpretation of data generated by linear and RF excited ion mobility spectrometers[J].International Journal of Mass Spectrometry,2002,214 (1):95-104
[10]陈焕文,李明,金钦汉.质谱仪器及其发展[J].大学化学,2004,19 (3):9-15.
[11]BURYAKOV A,KRYLOV E V,NAZAROV E G,et al.new method of separation of multi-atomic ions by mobility at atmospheric pressure using high-frequency amplitude-asymmetric strong electric field[J].International Journal of Mass Spectrometry and Ion Processes,1993,128 (3):143-148
[12]MILLER A,NAZAROV E G,EICEMAN G A,et al.MEMS radio-frequency ion mobility specteometer for chemical vapor detection[J].Sensors and Actuators:A,2001,91 (3):301-312.
[13]王志刚.FAIMS迁移区的初步理论研究[D].太原:中北大学,2008.
[14]赵佳楠.IMS-MS联用装置的研发及其在毒品爆炸物检测领域的应用研究[D].北京:北京化工大学,2016.
基本信息:
DOI:10.13250/j.cnki.wndz.2021.03.006
中图分类号:TP212
引用信息:
[1]张成印,雷程,梁庭等.微型化FAIMS气体传感器的制备与测试[J].微纳电子技术,2021,58(03):219-224.DOI:10.13250/j.cnki.wndz.2021.03.006.
基金信息:
国家自然科学基金资助项目(61335008); 山西省自然科学基金资助项目(201801D221203); 高等学校科技创新资助项目(1810600108MZ)