791 | 3 | 19 |
下载次数 | 被引频次 | 阅读次数 |
对可穿戴汗液传感器进行了简单的阐述,介绍了汗液传感器所需具备的物理化学性能。简述了汗液产生与采集的方式,并根据转换后得到的信号类型(电信号和光信号)将汗液传感器划分为电化学汗液传感器和光学法汗液传感器。根据不同的传感原理将电化学汗液传感器和光学法汗液传感器进一步细分,重点介绍其传感原理及国内外的研究现状,并对不同类型汗液传感器的优缺点进行分析。最后,对当前可穿戴汗液传感器面临的挑战以及未来的发展方向进行了展望。
Abstract:Wearable sweat sensors are briefly described, and the physical and chemical properties required for sweat sensors are introduced. The methods of generating and collecting sweat are described briefly. According to the signal types(electrical signal and optical signal), sweat sensors are divided into electrochemical sweat sensors and optical sweat sensors. According to different sensing principles, electrochemical sweat sensors and optical sweat sensors are further subdivided. The sensing principles and research status at home and abroad are mainly introduced, and the advantages and disadvantages of different types of sweat sensors are analyzed. Finally, the challenges faced by the current wearable sweat sensors and future development direction are prospected.
[1] KANG N,LIN F,ZHAO W,et al.Nanoparticle-nanofibrous membranes as scaffolds for flexible sweat sensors[J].ACS Sensors,2016,1(8):1060-1069.
[2] WANG J,WANG L R,LI G H,et al.Ultra-small wearable flexible biosensor for continuous sweat analysis[J].ACS Sensors,2022,7(10):3102-3107.
[3] ZHENG X F,ZHANG F R,WANG K,et al.Smart biosensors and intelligent devices for salivary biomarker detection[J].TrAC Trends in Analytical Chemistry,2021,140:116281-1-116281-21.
[4] MANI V,BEDUK T,KHUSHAIM W,et al.Electrochemical sensors targeting salivary biomarkers:a comprehensive review[J].TrAC Trends in Analytical Chemistry,2021,135:116164-1-116164-11.
[5] LI X L,ZHAN C Y,HUANG Q Q,et al.Smart Diaper based on integrated multiplex carbon nanotube-coated electrode array sensors for in situ urine monitoring[J].ACS Applied Nano Materials,2022,5(4):4767-4778.
[6] ZHENG H,HAN X,WEI Q L,et al.A green flexible and wearable biosensor based on carbon nanofibers for sensitive detection of uric acid in artificial urine[J].Journal of Materials Chemistry:B,2022,10(41):8450-8461.
[7] SHEN H,LEI H,GU M W,et al.A wearable electrowetting on dielectrics sensor for real-time human sweat monitor by triboelectric field regulation[J].Advanced Functional Materials,2022,32(34):2204525-1-2204525-8.
[8] KANG B C,PARK B S,HA T J.Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites[J].Applied Surface Science,2019,470:13-18.
[9] MARTíN A,KIM J,KURNIAWAN J F,et al.Epidermal microfluidic electrochemical detection system:enhanced sweat sampling and metabolite detection[J].ACS Sensors,2017,2(12):1860-1868.
[10] HAN W X,HE H X,ZHANG L L,et al.A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays[J].ACS Applied Materials & Interfaces,2017,9(35):29526-29537.
[11] YANG Y R,SONG Y,BO X J,et al.A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J].Nature Biotechnology,2020,38(2):217-224.
[12] SEMPIONATTO J R,KHORSHED A A,AHMED A,et al.Epidermal enzymatic biosensors for sweat vitamin C:toward personalized nutrition[J].ACS Sensors,2020,5(6):1804-1813.
[13] KINNAMON D,GHANTA R,LIN K C,et al.Portable biosensor for monitoring cortisol in low-volume perspired human sweat[J].Scientific Reports,2017,7(1):1-13.
[14] ARYAL K P,JEONG H K.Functionalization of thermally reduced graphite oxide and carbon nanotubes by p-sulfonatocalix[4]arene and supramolecular recognition of tyrosine[J].Chemical Physics Letters,2019,714:69-73.
[15] IANNAZZO D,ESPRO C,FERLAZZO A,et al.Electrochemical and fluorescent properties of crown ether func-tionalized graphene quantum dots for potassium and sodium ions detection[J].Nanomaterials,2021,11(11):2897-1-2897-13.
[16] ZHAO T M,ZHENG C W,HE H X,et al.A self-powered biosensing electronic-skin for real-time sweat Ca2+ detection and wireless data transmission[J].Smart Materials and Structures,2019,28(8):085015-1-085015-10.
[17] CHOI D H,KIM J S,CUTTING G R,et al.Wearable potentiometric chloride sweat sensor:the critical role of the salt bridge[J].Analytical Chemistry,2016,88(24):12241-12247.
[18] McCAUL M,PORTER A,BARRETT R,et al.Wearable platform for real-time monitoring of sodium in sweat[J].ChemPhysChem,2018,19(12):1531-1536.
[19] GAO W,NYEIN H Y Y,SHAHPAR Z,et al.Wearable microsensor array for multiplexed heavy metal monitoring of body fluids[J].ACS Sensors,2016,1(7):866-874.
[20] MEHMETI E,STANKOVI,et al.Wiring of glucose oxidase with graphene nanoribbons:an electrochemical third generation glucose biosensor[J].Microchimica Acta,2017,184:1127-1134.
[21] HAN S T,PENG H Y,SUN Q J,et al.An overview of the development of flexible sensors[J].Advanced Mate-rials,2017,29(33):1700375-1-1700375-22.
[22] BARIYA M,NYEIN H,JAVEY A.Wearable sweat sensors[J].Nature Electronics,2018,1(3):160-171.
[23] JI W H,ZHU J Y,WU W X,et al.Wearable sweat biosensors refresh personalized health/medical diagnostics[J].Research,2022(1):631-649.
[24] GAO F P,LIU C X,ZHANG L C,et al.Wearable and flexible electrochemical sensors for sweat analysis:a review[J].Microsystems & Nanoengineering,2023,9(1):1-1-1-21.
[25] WANG Y S,WANG X Q,LU W,et al.A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat[J].Talanta,2019,198:86-92.
[26] KANG T H,LEE S W,HWANG K,et al.All-inkjet-printed flexible nanobio-devices with efficient electrochemical coupling using amphiphilic biomaterials[J].ACS Applied Materials & Interfaces,2020,12(21):24231-24241.
[27] ZHAO C,LI X,WU Q Y,et al.A thread-based wearable sweat nanobiosensor[J].Biosensors and Bioelectronics,2021,188:113270-1-113270-12.
[28] XUAN X,PéREZ-RàFOLS C,CHEN C,et al.Lactate biosensing for reliable on-body sweat analysis[J].ACS Sensors,2021,6(7):2763-2771.
[29] XIAO J Y,LUO Y,SU L,et al.Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid[J].Analytica Chimica Acta,2022,1208:339843-1-339843-7.
[30] LIU Y L,LIU R,QIN Y,et al.Flexible electrochemical urea sensor based on surface molecularly imprinted nanotubes for detection of human sweat[J].Analytical Chemistry,2018,90(21):13081-13087.
[31] MUGO S M,ALBERKANT J.Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat[J].Analytical and Bioanalytical Chemistry,2020,412:1825-1833.
[32] TANG W X,YIN L,SEMPIONATTO J R,et al.Touch-based stressless cortisol sensing[J].Advanced Materials,2021,33(18):2008465-1-2008465-11.
[33] KANOKPAKA P,CHANG L Y,WANG B C,et al.Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat[J].Nano Energy,2022,100:107464-1-107464-10.
[34] MEI X C,YANG J,YU X G,et al.Wearable molecularly imprinted electrochemical sensor with integrated nanofiber-based microfluidic chip for in situ monitoring of cortisol in sweat[J].Sensors and Actuators:B,2023,381:133451-1-133451-5.
[35] WEI X D,ZHU M M,LI J L,et al.Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface[J].Nano Energy,2021,85:106031-1-106031-8.
[36] KAMMARCHEDU V,BUTLER D,EBRAHIMI A.A machine learning-based multimodal electrochemical analytical device based on eMoSx-LIG for multiplexed detection of tyrosine and uric acid in sweat and saliva[J].Analytica Chimica Acta,2022,1232:340447-1-340447-9.
[37] XU Z Y,QIAO X J,TAO R Z,et al.A wearable sensor based on multifunctional conductive hydrogel for simul-taneous accurate pH and tyrosine monitoring in sweat[J].Biosensors and Bioelectronics,2023,234:115360-1-115360-9.
[38] ASIF M H,ALI S M U,NUR O,et al.Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose[J].Biosensors and Bioelectronics,2010,25(10):2205-2211.
[39] FONTANA-ESCARTíN A,LANZALACO S,BERTRAN O,et al.Electrochemical multi-sensors obtained by appl-ying an electric discharge treatment to 3D-printed poly (lactic acid)[J].Applied Surface Science,2022,597:153623-1-153623-12.
[40] MIN J H,TU J B,XU C H,et al.Skin-interfaced wearable sweat sensors for precision medicine[J].Chemical Reviews,2023,123(8):5049-5138.
[41] WANG R,ZHAI Q F,AN T C,et al.Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat[J].Talanta,2021,222:121484-1-121484-12.
[42] PAYNE M E,ZAMARAYEVA A,PISTER V I,et al.Printed,flexible lactate sensors:design considerations before performing on-body measurements[J].Scientific Reports,2019,9(1):13720-1-13720-10.
[43] VINOTH R,NAKAGAWA T,MATHIYARASU J,et al.Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis[J].ACS Sensors,2021,6(3):1174-1186.
[44] CARVALHO W S P,WEI M L,IKPO N,et al.Polymer-based technologies for sensing applications[J].Analytical Chemistry,2018,90:459-479.
[45] QIN J,JIANG S B,WANG Z S,et al.Metasurface micro/nano-optical sensors:principles and applications[J].ACS Nano,2022,16(8):11598-11618.
[46] KIM J,LEE S,KIM S,et al.Development of a fluorescent chemosensor for chloride ion detection in sweat using Ag+-benzimidazole complexes[J].Dyes and Pigments,2020,177:108291-1-108291-6.
[47] ZHENG X T,CHOI Y,PHUA D G G,et al.Noncovalent fluorescent biodot-protein conjugates with well-preserved native functions for improved sweat glucose detection[J].Bioconjugate Chemistry,2020,31(3):754-763.
[48] CUI Y X,DUAN W,JIN Y,et al.Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose[J].ACS Sensors,2020,5(7):2096-2105.
[49] JIA Y H,YAN B.Visual Ratiometric fluorescence sensing of L-lactate in sweat by Eu-MOF and the design of logic devices[J].Spectrochimica Acta:A,2023:122764-1-122764-7.
[50] PROMPHET N,RATTANAWALEEDIROJN P,SIRALER-TMUKUL K,et al.Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate[J].Talanta,2019,192:424-430.
[51] VAQUER A,BARóN E,de la RICA R.Wearable analytical platform with enzyme-modulated dynamic range for the simultaneous colorimetric detection of sweat volume and sweat biomarkers[J].ACS Sensors,2020,6(1):130-136.
[52] VAQUER A,BARóN E,de la RICA R.Detection of low glucose levels in sweat with colorimetric wearable biosensors[J].Analyst,2021,146(10):3273-3279.
[53] XIAO J Y,LIU Y,SU L,et al.Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose[J].Analytical Chemistry,2019,91(23):14803-14807.
[54] HE J,XIAO G,CHEN X D,et al.A thermoresponsive microfluidic system integrating a shape memory polymer-modified textile and a paper-based colorimetric sensor for the detection of glucose in human sweat[J].RSC Advances,2019,9(41):23957-23963.
[55] SHI H H,CAO Y,ZENG Y N,et al.Wearable tesla valve-based sweat collection device for sweat colorimetric analysis[J].Talanta,2022,240:123208-1-123208-10.
[56] MOGERA U,GUO H,NAMKOONG M,et al.Wearable plasmonic paper-based microfluidics for continuous sweat analysis[J].Science Advances,2022,8(12):eabn1736-1-eabn1736-12.
[57] LU D C,CAI R Y,LIAO Y Q,et al.Two-dimensional glass/p-ATP/Ag NPs as multifunctional SERS substrates for label-free quantification of uric acid in sweat[J].Spectrochimica Acta:A,2023,296:122631-1-122631-7.
[58] THOMAS S W,JOLY G D,SWAGER T M.Chemical sensors based on amplifying fluorescent conjugated polymers[J].Chemical Reviews,2007,107(4):1339-1386.
[59] YU H X,SUN J T.Sweat detection theory and fluid driven methods:a review[J].Nanotechnology and Precision Engineering,2020,3(3):126-140.
[60] MORBIOLI G G,MAZZU-NASCIMENTO T,STOCKTON A M,et al.Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—a review[J].Analytica Chimica Acta,2017,970:1-22.
[61] CHEN D Z,ZHANG L,NING P,et al.In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bac-teria[J].Nano Research,2021,14(12):4885-4893.
[62] WANG Y L,ZHAO C,WANG J J,et al.Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces[J].Science Advances,2021,7(4):eabe4553-1-eabe4553-11.
[63] CHUNG M,SKINNER W H,ROBERT C,et al.Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers[J].ACS Applied Materials & Interfaces,2021,13(43):51504-51518.
[64] KOH E H,LEE W C,CHOI Y J,et al.A wearable surface-enhanced Raman scattering sensor for label-free mole-cular detection[J].ACS Applied Materials & Interfaces,2021,13(2):3024-3032.
[65] PU Z H,TU J A,HAN R X,et al.A flexible enzyme-electrode sensor with cylindrical working electrode modified with a 3D nanostructure for implantable continuous glucose monitoring[J].Lab on a Chip,2018,18(23):3570-3577.
基本信息:
DOI:10.13250/j.cnki.wndz.2023.09.004
中图分类号:TP212;R318
引用信息:
[1]李阳,谯云,星仓龙等.基于电化学及光学法汗液可穿戴传感器的研究进展[J].微纳电子技术,2023,60(09):1366-1375.DOI:10.13250/j.cnki.wndz.2023.09.004.
基金信息:
陕西省自然科学基础研究计划资助项目(2022JQ-364); 教育部“春晖计划”合作科研项目(202200545); 西安市科技计划资助项目(22GXFW0035); 西安工程大学2022年度学位与研究生教育综合改革研究与实践项目(22yjzg21)