nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2021, 09, v.58 769-775+803
混合溶剂法调控镍基MOF纳米结构及其电化学性能
基金项目(Foundation): 国家自然科学基金资助项目(U1810204,61901293,22002083,21905099); 山西省自然科学基金资助项目(201901D111099); 山西省高校科技创新研究项目(2016138)
邮箱(Email):
DOI: 10.13250/j.cnki.wndz.2021.09.002
摘要:

金属有机框架(MOF)具有高比表面积、结构丰富、孔道可调且含大量不饱和配位点等优点,但较差的导电性限制了其在电化学储能领域的应用。以溶剂热法的方式,通过调节N,N-二甲基甲酰胺(DMF)中溶剂成分(去离子水、乙醇)合成了四种不同形貌的Ni-MOF,实现形貌结构调控改善其导电性进而提升其电化学性能。实验结果表明:Ni-MOF形貌结构受溶剂成分影响较大进而影响其比表面积,当电流密度为1 A·g-1时,在3 mol/L KOH的电解液中由DMF、去离子水和乙醇共同作为溶剂时合成的Ni-MOF纳米片状结构表现出更优异的电化学性能,比电容高达994 A·g-1,3 000次循环充放电后依然能够保持初始比电容的80%。表明大比表面积的纳米结构能为电化学储能提供更多的反应活性位点,缩短离子和电荷的传输距离,有效提高电极材料比电容。

Abstract:

Metal-organic frameworks(MOFs) have the advantages of high specific surface area, rich structure, tunable pore channels and a large number of unsaturated coordination sites, but poor electrical conductivity limits their applications in electrochemical energy storage. The four Ni-MOFs with different morphologies were synthesized by adjusting the solvent composition(deionized water and ethanol) in N,N-dimethylformamide(DMF) through solvothermal method to achieve morphological structure modulation to improve their electrical conductivity and then their electrochemical properties. The experimental results show that the morphological structure of Ni-MOFs is greatly affected by the solvent composition and then the specific surface area is affected. When the current density is 1 A·g-1, the Ni-MOF nanosheets synthesized in the electrolyte of 3 mol/L KOH with DMF, deionized water and ethanol as solvents show better electrochemical performance, and the specific capacitance is as high as 994 F·g-1, and 80% of the initial specific capacitance can still be maintained after 3 000 cycles of charging and discharging. This indicates that the nanostructures with large specific surface area can provide more reactive sites for electrochemical energy storage, shorten the transmission distance of ions and charges, and effectively improve the specific capacitance of electrode materials.

参考文献

[1] DENG T,LU Y,ZHANG W,et al.Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes[J].Advanced Energy Materials,2017,8(7):1702294-1-1702294-7.

[2] JIAO Y,PEI J,CHEN D H,et al.Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors[J].Journal of Materials Chemistry:A,2017,5(3):1094-1102.

[3] MEI B A,MUNTESHARI O,LAU J,et al.Physical interpretations of Nyquist plots for EDLC electrodes and devices[J].Journal of Physical Chemistry:C,2018,122(1):194-206.

[4] LIU W,NIU H,YANG J,et al.Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors[J].Chemistry of Materials,2018,30(3):1055-1068.

[5] ZHENG S S,LI X R,YAN B Y,et al.Transition-metal (Fe,Co,Ni) based metal-organic frameworks for electrochemical energy storage[J].Advanced Energy Materials,2017,7(18):1602733-1-1602733-27.

[6] JIANG H Q,LIU X C,WU Y S,et al.Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J].Angewandte Chemie-International Edition,2018,130(15):3980-3985.

[7] GAO S W,SUI Y W,WEI F X,et al.Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors[J].Journal of Materials Science,2018,53(3):6807-6818.

[8] YANG J,ZHENG C,XIONG P X,et al.Zn-doped Ni-MOF material with a high supercapacitive performance[J].Journal of Materials Chemistry:A,2014,2(44):19005-19010.

[9] ZHANG D D,HUANG R X,XIE H M,et al.Effect of the valence state of initial iron source on oxygen evolution activity of Fe-doped Ni-MOF[J].Chemical Papers,2020,74(9):2775-2784.

[10] CHEN X Y,WU X M,GUO H X,et al.Improvement of capacitance activity for Cu-doped Ni-based metal-organic frameworks by adding potassium hexacyanoferrate into KOH electrolyte[J].Applied Organometallic Chemistry,2019,33(11):e5193-1-e5193-9.

[11] BANERJEE P C,LOBO D E,MIDDAG R,et al.Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites:more than the sum of its parts[J].ACS Applied Materials & Interfaces,2015,7(6):3655-3664.

[12] DU P C,DONG Y N,LIU C,et al.Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor[J].Journal of Colloid and Interface Science,2018,518:57-68.

[13] 商梦莉,仇满德,边旭.金属有机骨架ZIF-67材料的合成及微结构调控研究[J].人工晶体学报,2019,48(12):2228-2234.

[14] RAMACHANDRAN R,ZHAO C H,LUO D,et al.Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials[J].Electrochimica Acta,2018,267:170-180.

[15] LIU X X,SHI C D,ZHAI C W,et al.Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J].ACS Applied Materials & Interfaces,2016,8(7):4585-4591.

[16] YUE M L,JIANG Y F,ZHANG L,et al.Solvent-induced cadmium(Ⅱ) metal-organic frameworks with adjus-table guest-evacuated porosity:application in the controllable assembly of MOF-Derived porous carbon materials for supercapacitors[J].Chemistry:a European Journal,2017,23(62):15680-15693.

[17] GE D H,PENG J,QU G L,et al.Nanostructured Co(Ⅱ)-based MOFs as promising anodes for advanced lithium storage[J].New Journal of Chemistry,2016,40(11):9238-9244.

[18] SONG X Y,MA Y,GE X,et al.Europium-based infinite coordination polymer nanospheres as an effective fluorescence probe for phosphate sensing[J].RSC Advances,2017,7(14):8661-8669.

[19] HAN Y,ZHANG S,SHEN N,et al.MOF-derived porous NiO nanoparticle architecture for high performance supercapacitors[J].Materials Letters,2017,188:1-4.

[20] YANG J,XIONG P X,ZHENG C,et al.Metal-organic frameworks:a new promising class of materials for a high performance supercapacitor electrode[J].Journal of Materials Chemistry:A,2014,2(39):16640-16644.

基本信息:

DOI:10.13250/j.cnki.wndz.2021.09.002

中图分类号:TB383.1;TM53

引用信息:

[1]葛威,张文磊,李廷鱼等.混合溶剂法调控镍基MOF纳米结构及其电化学性能[J].微纳电子技术,2021,58(09):769-775+803.DOI:10.13250/j.cnki.wndz.2021.09.002.

基金信息:

国家自然科学基金资助项目(U1810204,61901293,22002083,21905099); 山西省自然科学基金资助项目(201901D111099); 山西省高校科技创新研究项目(2016138)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文