231 | 1 | 6 |
下载次数 | 被引频次 | 阅读次数 |
装备领域的变革对智能化提出了新的要求,模块化、通用化成为当前的重要趋势。基于微机电系统(MEMS)技术的惯性集成微系统因具备高密度多功能集成、高可靠等优点,可满足高效费比和精准作用需求。从智能装备对MEMS惯性集成微系统的需求出发,重点介绍了MEMS惯性集成微系统跨尺度设计、三维异构集成工艺、集成检测与可靠性验证等关键技术,并对技术发展趋势进行了分析。
Abstract:Changes in the field of equipment have put forward new demands for intelligence. Modularization and universalization have become important trends. Micro-electromechanical system(MEMS) inertial integrated microsystems, due to their advantages of high-density multifunction integration and high reliability, can meet requirements for high cost-effectiveness ratio and precise actions. Starting from the needs for intelligent equipment towards MEMS inertial integrated microsystems, key technologies on aspects of cross-scale design of MEMS inertial integrated microsystems, three-dimensional heterogeneous integration processes, integrated testing, and reliability verification are introduced, and the technology development trends are analyzed.
[1] 谢文,卜昊.美俄炮兵精确制导弹药现状及发展趋势[J].舰船电子工程,2024,44(2):1-3,48.XIE W,BU H.Present situation and development trend of precise guided ammunition of the U.S.and Russian artillery[J].Ship Electronic Engineering,2024,44(2):1-3,48(in Chinese).
[2] 赵正平.微系统三维集成技术的新发展 [J].微纳电子技术,2017,54(1):1-10.ZHAO Z P.New progress of the micro system three-dimensional integration technology [J].Micronanoelectronic Technology,2017,54(1):1-10 (in Chinese).
[3] Honeywell Inc.HG1930 inertial measurement unit [EB/OL].[2024-10-05].https://pdf.aeroexpo.online/pdf/honeywell-safety-productivity-solutions/hg1930/186046-19244.html.
[4] Collins Aerospace.Inertial Measurement Units [EB/OL].[2024-10-05].https://www.collinsaerospace.com/what-we-do/industries/military-and-defense/navigation/wea-pons-products/guidance-navigation-control/inertial-navigation-systems.
[5] Silicon Sensing DMU30六自由度MEMS惯性测量单元 [EB/OL].[2024-10-05].http://www.staruniversal.cn/staruni/vip_doc/15619982.html.
[6] 郝继山,向伟玮.微系统三维异质异构集成与应用 [J].电子工艺技术,2018,39(6):317-321.HAO J S,XIANG W W.3D heterogeneous integration for micro-system and its application [J].Electronics Process Technology,2018,39(6):317-321 (in Chinese).
[7] 李薇,席翔,吴宇列.定位导航授时微系统技术 [J].国防科技,2015,36(5):37-41.LI W,XI X,WU Y L.The introduction for micro-system technology for positioning,navigation and timing [J].National Defense Science & Technology,2015,36(5):37-41 (in Chinese).
[8] 唐奕,王建博,王燕.国外模块化制导航空炸弹发展概述 [J].飞航导弹,2018(1):38-42.
[9] DALAL M.Low noise,low power interface circuits and systems for high frequency resonant micro-gyroscopes [D].Atlanta:Georgia Institute of Technology,2012.
[10] 杨元喜,李晓燕.微PNT与综合PNT [J].测绘学报,2017,46(10):1249-1254.YANG Y X,LI X Y.Micro-PNT and comprehensive PNT [J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1249-1254 (in Chinese).
[11] 赵正平.Chiplet基三维集成技术与集成微系统的新进展(续) [J].微纳电子技术,2023,60(5):641-657.ZHAO Z P.New advances in chiplet-based 3D integration technology and integrated microsystems (continued) [J].Micronanoelectronic Technology,2023,60(5):641-657 (in Chinese).
[12] DUAN X M,CAO H L,LIU Z Y.3D stack method for micro-PNT based on TSV technology [C]//Proceedings of IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC).Chongqing,China,2017:172-175.
[13] 李男男,邢朝洋.惯性微系统封装集成技术研究进展 [J].导航与控制,2018,17(6):28-34.LI N N,XING C Y.Development of inertial micro-system packaging and integration technology [J].Navigation and Control,2018,17(6):28-34 (in Chinese).
[14] LIN D,MacDONALD R,CALBAZA D,et al.Polaris—a low cost MEMS fabrication platform for navigation-grade inertial sensors [C]//Proceedings of IEEE International Symposium on Inertial Sensors and Systerms(INERTIAL).Kailua-Kona,USA,2021:1-4.
[15] 傅广操,陈亮,唐旻,等.基于等效热模型的系统级封装仿真技术 [J].电子技术,2017,46(9):5-7.FU G C,CHEN L,TANG M,et al.Temperature simulation of SiP based on equivalent thermal models [J].Electronic Technology,2017,46(9):5-7 (in Chinese).
[16] 卫三娟.基于TSV的三维高功率芯片的散热特性研究 [D].西安:西安电子科技大学,2015.
[17] 戈长丽.三维封装系统TSV和微通道的热建模技术 [D].上海:上海交通大学,2019.
[18] 曹明鹏,吴晓鹏,管宏山,等.基于对偶单元法的三维集成微系统电热耦合分析 [J].物理学报,2021,70(7):186-194.CAO M P,WU X P,GUAN H S,et al.Electrothermal coupling analysis of three-dimensional integrated microsystem based on dual cell method [J].Acta Physica Sinica,2021,70(7):186-194 (in Chinese).
[19] 曹明鹏.三维微系统的多物理场耦合特性研究 [D].西安:西安电子科技大学,2021.
[20] 张墅野,李振锋,何鹏.微系统三维异质异构集成研究进展 [J].电子与封装,2021,21(10):78-88.ZHANG S Y,LI Z F,HE P.Progress on 3D heteroge-neous integration of microsystem [J].Electronics & Packaging,2021,21(10):78-88 (in Chinese).
[21] 王楷,孔延梅,蒋鹏,等.惯性导航微系统三维集成研究进展 [J].微电子学与计算机,2023,40(1):18-30.WANG K,KONG Y M,JIANG P,et al.A review on 3D integration of inertial navigation microsystem [J].Microelectronics & Computer,2023,40(1):18-30 (in Chinese).
[22] 童志义.3D IC集成与硅通孔(TSV)互连 [J].电子工业专用设备,2009,38(3):27-34.TONG Z Y.3D IC stacking with TSV interconnect [J].Equipment for Electronic Products Manufacturing,2009,38(3):27-34 (in Chinese).
[23] 吴道伟.高密度2.5D TSV转接板关键技术研究 [D].西安:西安电子科技大学,2021.
[24] 赵雪薇,阎璐,邢朝洋,等.微系统集成用倒装芯片工艺技术的发展及趋势 [J].导航与控制,2019,18(5):11-21.ZHAO X W,YAN L,XING C Y,et al.Development and trend of flip chip technology for microsystem integration [J].Navigation and Control,2019,18(5):11-21 (in Chinese).
[25] 方旭.三维集成电路中TSV测试与故障诊断方法研究 [D].哈尔滨:哈尔滨工业大学,2019.
[26] 陈鹏飞,宿磊,独莉,等.TSV三维集成的缺陷检测技术 [J].半导体技术,2016,41(1):63-69.CHEN P F,SU L,DU L,et al.Defect inspection techno-logies for TSV based 3D integration [J].Semiconductor Technology,2016,41(1):63-69 (in Chinese).
[27] 王喆垚.三维集成技术 [M].北京:清华大学出版社,2014.
[28] LIN Y H,HUANG S Y,TSAI K H,et al.Parametric delay test of post-bond through-silicon vias in 3-D ICs via variable output thresholding analysis [J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2013,32(5):737-747.
[29] LAU J H.3D IC integration and packaging [M].New York:McGraw-Hill,2016.
[30] 黄浩铭,邢朝洋,单光宝,等.惯性微系统中三维互连结构可靠性研究 [C]//惯性技术发展动态发展方向研讨会论文集.大连,中国,2021:225-231.
[31] HANCOCK T M,DEMMIN J C.Heterogeneous and 3D integration at DARPA [C]//Proceedings of International 3D Systems Integration Conference (3DIC).Sendai,Japan,2019:1-4.
[32] 王国栋,邢朝洋,李男男,等.微系统技术综述 [C]//第四届航天电子战略研究论坛论文集(新型惯性器件专刊).北京,中国,2018:59-63.
基本信息:
DOI:10.13250/j.cnki.wndz.25030403
中图分类号:TH-39
引用信息:
[1]蒋鹏,鞠莉娜,王子等.面向智能装备的MEMS惯性集成微系统关键技术分析[J].微纳电子技术,2025,62(03):98-104.DOI:10.13250/j.cnki.wndz.25030403.
基金信息: