196 | 1 | 4 |
下载次数 | 被引频次 | 阅读次数 |
气溶胶喷印水性功能油墨能为微纳柔性电子技术提供更环保的解决方案,但在油墨特性及复杂的打印参数共同作用下,其打印连续性、迹线成形、过度喷涂方面的缺陷亟待解决。基于聚乙烯吡咯烷酮(PVP)水性油墨,通过控制变量法系统地探究了适用于气溶胶喷印的水性油墨黏度(1~10 mPa·s)并优化了喷印工艺,总结出水性油墨黏度与气溶胶喷印的最优参数范围设置规律,并据此进行了水性纳米银油墨的喷印,制备了外径为1.96 mm的平面螺旋电感,表征了其电感及品质因数,测试结果与仿真结果有良好的一致性,其电感在0.024μH左右,可应用于射频识别(RFID)、滤波以及感应元件等领域。该结果为气溶胶喷印水性功能油墨的研究提供了前期的实验支持,有望推动气溶胶喷印在微纳柔性电子技术中的发展。
Abstract:Aerosol jet printing of water-based functional ink offers a more environmentally solution for micro-nano flexible electronic technology. However, defects in printing continuity, trace formation, and excessive spraying urgently need resolution due to the interplay of ink characteristics and complex printing parameters. Based on water-based polyvinylpyrrolidone(PVP) ink, a controlled variable approach was employed to systematically investigate water-based ink viscosity suitable for aerosol jet printing(1-10 mPa·s), and the jet printing process was optimized. The regular setting range of optimal parameters for water-based ink viscosity and aerosol jet printing were summarized. According to the setting regularity, water-based nano-silver ink was jet-printed, and a planar spiral inductor with an outer diameter of 1.96 mm was prepared. The inductance and quality factor were characterized, showing good consistency between test and simulation results. With an inductance of around 0.024 μH, it can be applied in fields of radio frequency identification(RFID), filtering, sensing components, etc. The results provide preliminary experimental support for the research of aerosol jet printing of water-based functional ink, promising the development of aerosol jet printing in micro-nano flexible electronic technology.
[1] BALANI S B,GHAFFAR S H,CHOUGAN M,et al.Processes and materials used for direct writing technologies:a review [J].Results in Engineering,2021,11:100257.
[2] KWON K S,RAHMAN M K,PHUNG T H,et al.Review of digital printing technologies for electronic materials [J].Flexible and Printed Electronics,2020,5(4):043003.
[3] JING Q S,PACE A,IVES L,et al.Aerosol-jet-printed,conformable microfluidic force sensors [J].Cell Reports Physical Science,2021,2(4):100386.
[4] LI X Q,REN Y F,WANG X,et al.A universal method for high-efficiency immobilization of semiconducting carbon nanotubes toward fully printed paper-based electronics [J].Advanced Electronic Materials,2021,7(3):2001025.
[5] OHIRI K A,NOWICKI N M,MONTALBANO T J,et al.Electroplating of aerosol jet-printed silver inks [J].Advanced Engineering Materials,2021,23(10):2100362.
[6] GAMBA L,JOHNSON Z T,ATTERBERG J,et al.Systematic design of a graphene ink formulation for aerosol jet printing [J].ACS Applied Materials & Interfaces,2023,15(2):3325-3335.
[7] WANG B,ZHANG H N,CHOI J P,et al.A post-treatment method to enhance the property of aerosol jet printed electric circuit on 3D printed substrate [J].Materials,2020,13(24):5602.
[8] LEE H R,FURUKAWA N,RICCO A J,et al.Carbon nanotube thermoelectric devices by direct printing:toward wearable energy converters [J].Applied Physics Letters,2021,118(17):173901.
[9] WILKINSON N J,SMITH M A A,KAY R W,et al.A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing [J].The International Journal of Advanced Manufacturing Technology,2019,105(11):4599-4619.
[10] VLNIESKA V,GILSHTEIN E,KUNKA D,et al.Aerosol jet printing of 3D pillar arrays from photopolymer ink [J].Polymers,2022,14(16):3411.
[11 ]刘波,舒霞云,常雪峰,等.双层鞘气聚焦对气溶胶喷印粉末汇聚特性的影响[J].微纳电子技术,2022,59(4):365-372.LIU B,SHU X Y,CHANG X F,et al.Effect of dual-sheath gas focusing on the convergence characteristics of aerosol jet printing powder [J].Micronanoelectronic Technology,2022,59(4):365-372.
[12] TAFOYA R R,SECOR E B.Understanding and mitigating process drift in aerosol jet printing [J].Flexible and Printed Electronics,2020,5(1):015009.
[13] ARSENOV P V,EFIMOV A A,IVANOV V V.Optimizing aerosol jet printing process of platinum ink for high-resolution conductive microstructures on ceramic and polymer substrates [J].Polymers,2021,13(6):918.
[14] TARABELLA G,VURRO D,LAI S,et al.Aerosol jet printing of PEDOT∶PSS for large area flexible electronics [J].Flexible and Printed Electronics,2020,5(1):014005.
[15] MONNE M A,HOWLADER C Q,MISHRA B,et al.Synthesis of printable polyvinyl alcohol for aerosol jet and inkjet printing technology [J].Micromachines,2021,12(2):220.
[16] RAMESH S,MAHAJAN C,GERDES S,et al.Numerical and experimental investigation of aerosol jet printing [J].Additive Manufacturing,2022,59:103090.
[17] 张泽权,赵刚,陈君文.基于代码基元的熔融沉积加工能耗预测分析[J].现代制造工程,2023,(6):12-19.ZHANG Z Q,ZHAO G,CHEN J W,et al.Prediction and analysis of energy consumption in molting deposition processing based on code element [J].Modern Manufacturing Engineering,2023,(6):12-19.
[18] TACCOLA S,da VEIGA T,CHANDLER J H,et al.Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns [J].Scientific Reports,2022,12(1):17931.
[19] HUSSAIN I,WOO D K.Inductance calculation of single-layer planar spiral coil [J].Electronics,2022,11(5):750.
基本信息:
DOI:10.13250/j.cnki.wndz.24060501
中图分类号:TN05
引用信息:
[1]吴国良,张天玮,丁医华等.基于水性功能油墨的气溶胶喷印工艺的研究及应用[J].微纳电子技术,2024,61(06):154-163.DOI:10.13250/j.cnki.wndz.24060501.
基金信息:
江苏省产业前瞻竞争性项目(BE2017069)